Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Flyby of Large-Size Space Debris Objects Situated at Leo with Their Successive De-Orbiting

# 04, April 2016
DOI: 10.7463/0416.0838417
Article file: SE-BMSTU...o064.pdf (1379.88Kb)
authors: A.A. Baranov1,2, D.A. Grishko1,*, N.V. Chernov1



1 Bauman Moscow State Technical University, Moscow, Russia

2 Keldysh Institute of Applied Mathematics of Russian Academy of Sciences,
Moscow, Russia

Regarding the large-size space debris objects with a cross-section more than 5 m2 situated at LEO, it is possible to mark out 5 non-structured groups of such objects according to their spatial distribution. The orbits of objects in a group have approximately the same inclinations whereas the deviations in the Right Ascension of the Ascending node (RAAN) may be arbitrary. The features of changing orbital planes’ mutual orientation in a group are seen from the RAAN deviations’ evolution portrait.  The flights between the objects are being executed by a single active space vehicle (SV) which captures a LSSD object and takes it away to the especially calculated circular or elliptical low disposal orbit (DO), and then returns back for the next object.
The calculation of flyby maneuvers, in fact, breaks up into two independent tasks. At first, one can determine the parameters of the DO for each LSSD object using special software, so the coplanar maneuvers can be calculated ensuring the object’s transition to this orbit. Secondly, the flight to attain a new object is carried out from the DO of the previous object at the moment when their orbital planes will become equal. So it is possible to calculate the maneuvers, which help to return back for the next object, using numerical-analytical algorithm developed for non-coplanar rendez-vous of middle duration.
The time interval for an active SV to stay at the DO is defined by difference of precession velocities of orbital planes of the de-orbited object and of the next object. The usage of a circular DO allows an LSSD object to leave promptly from the region (over 700 km) where active SVs and other debris exist for a long time, whereas the apogee of the elliptical DO remains in the mentioned belt for 10 years. While forming elliptical DO one will need approximately 30% less of required summary characteristic velocity as compared with circular DO. The collision risk for an object staying at the elliptical DO during these ten years would constitute a half of the collision risk, which takes place if no removal operations were carried out. The paper is enriched by the examples of flyby maneuvers calculation for the first three LSSD groups using the described removal scheme.

References
  1. Liou J.-C., Johnson N.L. Characterization of the cataloged Fengyun-1C fragments and their long-term effect on the LEO environment. Advances in Space Research, 2009, vol. 43, no. 9, pp. 1407-1415. DOI: 10.1016/j.asr.2009.01.011
  2. Kessler D.J., Cour-Palais B.G. Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research, 1978, vol. 83, iss. A6, pp. 2637-2646.DOI: 10.1029/JA083iA06p02637
  3. White A.E., Lewis H.G.An adaptive strategy for active debris removal.Advances in Space Research, 2014,vol. 53, iss. 8, pp. 1195-1206. DOI: 10.1016/j.asr.2014.01.021
  4. Liou J.-C. An active debris removal parametric study for LEO environment remediation. Advances in Space Research, 2011, vol. 47, iss. 11, pp. 1865-1876. DOI: 10.1016/j.asr.2011.02.003
  5. Lewis H.G., White A.E., Crowther R., Stokes H. Synergy of debris mitigation and removal. Acta Astronautica, 2012, vol. 81, iss. 1, pp. 62-68. DOI: 10.1016/j.actaastro.2012.06.012
  6. Baranov A.A., Grishko D.A. The Methods Applicable For Energy Costs Minimization In Case Of Fly-By Of Constellation Elements. Polet. Obshcherossiiskii nauchno-tekhnicheskii zhurnal[Flight. All-Russian Scientific and Technical Journal], 2014, no. 8, pp. 39-48. (in Russian).
  7. Satellite Catalog (SATCAT). СelesTrak: website. Available at: http://www.celestrak.com/satcat/search.asp, accessed 21.11.2013.
  8. Trushlyakov V.I., Yutkin E.A. Overview of means for docking and capture of large-scale space debris objects. Omskii nauchnyi vestnik = Omsk Scientific Bulletin, 2013, no. 2, pp. 56-61. (in Russian).
  9. Emanuelli M., Ronse A., Tintori C., Trushlyakov V.I. A space debris removal mission using the orbital stage of launchers. Dinamika sistem, mekhanizmov i mashin = Dynamics of systems, mechanisms and machines, 2012, no. 2, pp. 185-218. Availableat: http://elibrary.ru/item.asp?id=21653625, accessed 23.07.2015.
  10. Castronuovo M.M. Active space debris removal—A preliminary mission analysis and design. Acta Astronautica, 2011,vol. 69, iss. 9-10, pp. 848-859. DOI: 10.1016/j.actaastro.2011.04.017
  11. Low Earth Orbit Large Debris Removal. Ad Astra Rocket Company (AARC): company website. Availableat: http://www.adastrarocket.com/aarc/debris, accessed 10.06.2013.
  12. Baranov A.A., Grishko D.A. Ballistic aspects of large-size space debris flyby at low Earth near-circular orbits. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2015,no. 4, pp. 143-154. DOI: 10.7868/S0002338815040058 (English version of journal: Journal of Computer and Systems Sciences International, 2015, vol. 54, no. 4, pp. 639-650. DOI: 10.1134/S106423071504005X ).
  13. Baranov A.A., Grishko D.A., Razoumny Y.N. Ballistic scheme selection for maneuvering inside a constellation with continuously changing configuration. Proc. of the C1. Astrodynamics Symposium. 2015, 13 October.
  14. Baranov A.A., Grishko D.A., Medvedevskikh V.V., Lapshin V.V. Solution of problem objects' flyby of bulky space debris in sun-synchronous orbits. Kosmicheskie issledovaniya = Cosmic Research, 2016, no. 3. (in Russian).
  15. Golikov A.R., Baranov A.A., Budyanskii A.A., Chernov N.V. Choice of the low-altitude disposal orbits and transfer of obsolete spacecrafts to them. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie = Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering , 2015 , no. 4, pp . 4-19. DOI :10.18698/0236-3941-2015-4-4-19 (in Russian).
  16. Golikov A.R. THEONA—a numerical-analytical theory of motion of artificial satellites of celestial bodies. Kosmicheskie issledovaniya, 2012, vol. 50, no. 6, pp. 480-489. (English version of journal: Cosmic Research, 2012, vol. 50, no. 6, pp. 449-458. DOI:10.1134/S0010952512060020 ).
  17. Baranov A.A. Numerical-analytical determination of parameters of multiturn maneuvers meeting КА on close near-circular non-coplanar orbits. Kosmicheskie issledovaniya = Cosmic Research, 2008, vol. 46, no. 5, pp. 430-439. (in Russian).
  18. El'yasberg P.E. Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli [Introduction to theory of flight of artificial Earth satellites]. Moscow, “Lenand” Publ., 2015. 544 p. (in Russian).
  19. Razumnyi Yu.N., Kozlov P.G., Razumnyi V.Yu. A method for calculating parameters of compound satellite constellations on circular and elliptic nodally synchronized orbits. Nauchno-tekhnicheskii vestnik Povolzh'ya = Scientific and Technical Volga region Bulletin, 2015, no. 3, pp. 196-199. (in Russian).
  20. Braun V., Lüpken A., Flegel S., Gelhaus J., Möckel M., Kebschull C., Wiedemann C., Vörsmann P.Active debris removal of multiple priority targets.Advances in Space Research, 2013,vol. 51, iss. 9, pp. 1638-1648. DOI: 10.1016/j.asr.2012.12.003
Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)