Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Applied Questions of Onboard Laser Radar Equipment Development

# 09, September 2015
DOI: 10.7463/0915.0811999
Article file: SE-BMSTU...o105.pdf (897.33Kb)
authors: E.I. Starovoitov1,*, N.E. Zubov1,2

During development of the spacecraft laser radar systems (LRS) it is a problem to make a choice of laser sources and photo-detectors both because of their using specifics in onboard equipment and because of the limited number of domestic and foreign manufacturers.
Previous publications did not consider in detail the accuracy versus laser pulse repetition frequency, the impact of photo-detector sensitivity and dynamic range on the LRS characteristics, and the power signal-protected photo-detector against overload.
The objective of this work is to analyze how the range, accuracy, and reliability of onboard LRS depend on different types of laser sources and photo-detectors, and on availability of electromechanical optical attenuator.
The paper describes design solutions that are used to compensate for a decreased sensitivity of photo-detector and an impact of these changes on the LRS characteristics.
It is shown that due to the high pulse repetition frequency a fiber laser is the preferred type of a laser source in onboard LRS, which can be used at ranges less than 500 m for two purposes: determining the orientation of the passive spacecraft with the accuracy of 0.3° and measuring the range rate during the rendezvous of spacecrafts with an accuracy of 0.003... 0.006 m/s.
The work identifies the attenuation level of the optical attenuator versus measured range. In close proximity to a diffusely reflecting passive spacecraft and a corner reflector this attenuator protects photo-detector. It is found that the optical attenuator is advisable to apply when using the photo-detector based on an avalanche photodiode. There is no need in optical attenuator (if a geometric factor is available in the case of sounding corner reflector) when a photo-detector based on pin-photodiode is used. Exclusion of electromechanical optical attenuator can increase the reliability function of LRS from Р (t)  = 0.9991 to Р (t)  = 0.9993.
The results obtained in this work can be used in development of different purpose onboard and ground-based LRS, laser range finders, and lidars.
In further studies it is advisable to consider the factors that affect the measuring accuracy of onboard LRS with a range of more than 500 m.

References
  1. Ruel S., Luu T., Berube A. On-Orbit Testing of Target-less TriDAR 3D Rendezvous and Docking Sensor. Proc of the International Symposium on Artificial Intelligent, Robotics and Automation in Space (i-SAIRAS 2010), August 29 – September 1, 2010, Sapporo, Japan. Available at: http://robotics.estec.esa.int/i-SAIRAS/isairas2010/PAPERS/004-2775-p.pdf, accessed 26.07.2015.
  2. English C., Okouneva G., Saint-Cyr P., Choudhuri A., Luu T. Real-Time Dynamic Pose Estimation Systems in Space: Lessons Learned for System Design and Performance Evaluation. International Journal of Intelligent Control and Systems (IJICS), 2011, vol. 16, no. 2, pp. 79-96.
  3. Grjaznov N.A., Pantaleev S.M., Ivanov A.E., Kochkarev D.A., Kulikov D.S. High performance measurement reference objects in space to the hydraulic centrifugal casting pipes. Nauchno-tekhnicheskie vedomosti SPbGPU = St. Petersburg State Polytechnical University Journal , 2013, no. 2 (171), pp. 197-202. (in Russian).
  4. Rems F., Fritz S., Boge T. Breadboard Model of a 3D LIDAR Sensor for Real-time Pose Estimation of Spacecraft. Proc. of the GNC 2014: 9th International ESA Conference on Guidance, Navigation & Control Systems , Porto, Portugal, 2–6 June 2014. Available at: http://elib.dlr.de/89757/1/GNC_2014_Paper_F_Rems.pdf, accessed 26.07.2015.
  5. Conticello S.S., Esposito M., Steffes S., et al. Development and Test Results of Sinplex, a Compact Navigator for Planetary Exploration. Proc. of the 4S Symposium 2014 – Symposium on Small Satellites for Earth Observation (IAA and DLR) and The Small Satellites Conference (AIAA and USU). Available at: http://elib.dlr.de/91227/1/4S-2014_sinplex_paper.pdf, accessed 26.07.2015.
  6. Pierrottet D.F., Amzajerdian F., Barnes B. A long distance Laser Altimeter for terrain relative navigation and spacecraft landing . NASA Langley Research Center, Hampton, Virginia, 2014. Available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140006392.pdf, accessed 26.07.2015.
  7. Namiki N., Mizuno T., Senshu H., et al. Performance of Hayabusa-2 LIDAR in Acceptance and Verification Tests. Proc. of the 46th Lunar and Planetary Science Conference , March 16-20, 2015, The Woodlands, Texas. Available at: http://www.hou.usra.edu/meetings/lpsc2015/pdf/1798.pdf, accessed 26.07.2015.
  8. Starovoitov E.I., Savchuk D.V., Zubov N.E. Selection of lasers for increasing the range of onboard laser ranging systems of space vehicles. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2013, no. 8, pp. 215-232. DOI: 10.7463/0813.0609292 (in Russian).
  9. Stavrov A.A., Pozdnyakov M.G. Pulsed laser rangefinders for optical location systems. Doklady BGUIR , 2003, vol.1, no. 2, pp. 59-65. (in Russian ).
  10. Kozintsev V.I., Belov M.L., Orlov V.M., Gorodnichev V.A., Strelkov B.V. Osnovy impul'snoi lazernoi lokatsii [The basics of pulsed laser ranging]. Moscow, Bauman MSTU Publ., 2010. 572 p. (in Russian).
  11. Nazarov V.N., Balashov I.F. Energeticheskaia otsenka impul'snykh lazernykh dal'nomerov [Energy assessment of pulsed laser range finders]. St. Petersburg, SPbSU ITMO Publ., 2002. 38 p. Available at: http://de.ifmo.ru/bk_netra/start.php?bn=27, accessed 26.07.2015. (in Russian).
  12. Starovoitov E.I., Savchuk D.V., Zubov N.E. Analysis of possibilities, optimization of mass and of power consumption for a laser altimeter controlling the descent of a spacecraft from the lunar orbit. Kosmicheskaya tekhnika i tekhnologii , 2014, no. 1 (4), pp. 67-74. (in Russian).
  13. Fedoseev V.I. Automatic laser system of control of parameters of cooperative spacecraft convergence. Opticheskii zhurnal = Journal of Optical Technology , 1996, no. 7, pp. 66-70. (in Russian).
  14. Malashin M.S., Kaminskii R.P., Borisov Iu.B. Osnovy proektirovaniia lazernykh lokatsionnykh system [Basis for the design of laser location systems.]. Moscow, Vysshaia shkola Publ., 1983. 207 p. (in Russian).
  15. Fiber Lasers. Spectra-Physics, A Newport Company: website. Available at: http://www.spectra-physics.com/products/fiber-lasers, accessed 26.07.2015.
  16. The catalogue of research works. The Stepanov Institute of physics of NAS of Belarus. Available at: http://ifanbel.bas-net.by/russian/booklet_russian.pdf, accessed 26.07.2015. (in Russian).
  17. Poluprovodnikovye lazery impul'snogo rezhima raboty [Semiconductor lasers of pulse mode operation]. Inject: company website. Available at: http://www.inject-laser.ru/products/semiconducters_lasers/subpage1.ivp, accessed 26.07.2015. (in Russian).
  18. Roux Y., Da Cunha P. The GNG measurement system for the automated transfer vehicle. Proc. of the 18th International Symposium on Space Flight Dynamics (ISSFD), Munich, Germany, 11 - 15 October, 2004. Available at: http://www.issfd.org/ISSFD_2004/papers/P1010.pdf, accessed 26.07.2015.
  19. Bachevsky S.V. Accuracy of definition of range and orientation of object by the method of proportions in matrix television systems. Voprosy radioelektroniki. Ser. Tekhnika televideniya = Questions of radio-electronics, The TV equipment series , 2010, is. 1, pp. 57-66. (in Russian).
  20. Vilner V., Volobuyev V., Laryushin A., Ryabokul A. Pulse Laser Rangefinder Measurements Actuality. Photonika , 2013, no. 3, pp. 42-60. (in Russian).
  21. Efanov V.V., Zakharov A.V., authors-compilers. Fobos Grunt: proekt kosmicheskoy ekspeditsii.V 2 t. T. 1 [Phobos Grunt: project of space expedition. In 2 vols. Vol.1]. Moscow, Polstar Publ., 2011. 237 p. (in Russian).
  22. Starovoitov E.I., Zubov N.E., Ivashov V.V., Nikul'chin A.V. Study of Efficiency and Optimization Parameters of Laser Device for Measuring the Range Rate of a Spacecraft. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2014, no. 6, pp. 247-269. DOI: 10.7463/0614.0712240 (in Russian).
  23. Starovoitov E.I. Reliability analysis of onboard laser ranging systems for control systems by movement of spacecraft. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU, 2014, no. 2, pp. 202-219. DOI:10.7463/0214.0699720(in Russian).
  24. Borovikov S.M. Teoreticheskie osnovy konstruirovaniya, tekhnologii i nadezhnosti [Theoretical foundations of design, technology and reliability]. Minsk, Dizayn PRO Publ., 1998. 336 p. (in Russian).
  25. Polyakov V.M., Pokrovskiy V.P., Soms L.N. Laser transmission module with a switchable directional pattern for the rangefinder of the Phobos–Ground spacecraft. Opticheskiy zhurnal , 2011, vol. 78, no. 10, pp. 4-9. (English version of journal : Journal of Optical Technology , 2011, vol. 78, no. 10, pp. 640-643. DOI: 10.1364/JOT.78.000640 ).

 

Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)