Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Numerically Simulated Impact of Gas Prandtl Number and Flow Model on Efficiency of the Machine-less Energetic Separation Device

# 10, October 2015
DOI: 10.7463/1015.0814490
Article file: SE-BMSTU...o035.pdf (848.46Kb)
authors: K.S. Egorov1,2,*, K.S. Rogozhinsky1,2



Bauman Moscow State Technical University, Moscow, Russia

2 Institute of Mechanics Lomonosov Moscow State University, Moscow, Russia


The presented paper regards the influence of one of similarity criteria – the Prandtl number of gas (Pr) - on the efficiency of the machine-less energetic separation device (Leontiev pipe), using numerical modeling in ANSYS software. This device, equally as Rank-Hilsch and Hartman-Schprenger pipes, is designed to separate one gas flow into two flows with different temperatures. One flow (supersonic) streams out of the pipe with a temperature higher than initial and the other (subsonic) flows out with a temperature lower than initial. This direction of energetic sep-aration is true if the Prandtl number is less than 1 that corresponds to gases.
The Prandtl number affects the efficiency of running Leontiev pipe indirectly both through a temperature difference on which a temperature recovery factor has an impact and through a thermal conductivity coeffi-cient that shows the impact of heat transfer intensity between gas and solid wall.
The Prandtl number range in the course of research was from 0.1 to 0.7. The Prandtl number value equal to 0.7 corresponds to the air or pure gases (for example, inert argon gas). The Prandtl number equal to 0.2 corresponds to the mixtures of inert gases such as helium-xenon.
The numerical modeling completed for the supersonic flow with Mach number 2.0 shows that efficiency of the machine-less energetic separation device has been increased approximately 2 times with the Prandtl number decreasing from 0.7 to 0.2. Moreover, for the counter-flow scheme this effect is a little higher due to its larger heat efficiency in comparison with the straight-flow one.
Also, the research shows that the main problem for the further increase of the Leontiev pipe efficiency is a small value of thermal conductivity coefficient, which requires an intensification of the heat exchange, especially in the supersonic flow. It can be obtained, for example,  by using a system of oblique shock waves in the supersonic channel.

References
  1. Burtsev S.A., Leont'ev A.I. Study of the influence of dissipative effects on the temperature stratification in gas flows (Review). Teplofizika vysokikh temperatur , 2014, vol. 52, no. 2, pp. 310-322. DOI: 10.7868/S0040364413060069 (English version of journal : High Temperature , 2014, vol. 52, iss. 2, pp. 297-307. DOI: 10.1134/S0018151X13060060 ).
  2. Kutateladze S.S., Leont'ev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe [Heat and mass exchange and friction in turbulent boundary layer]. Moscow, Energoatomizdat Publ., 1985. 320 p. (in Russian).
  3. Gryaznov N.D., Epifanov V.L., Manushin E.A. Teploobmennye ustroistva gazoturbinnykh i kombinirovannykh ustanovok [Heat Exchangers of Gas Turbines and Combined Units]. Moscow, Mashinostroenie Publ., 1985. 360 p. (in Russian).
  4. Leont'ev A.I., Burtsev S.A., Vizel' Ia.M., Chizhikov Iu.V. Experimental investigation of gas dynamic temperature stratification of natural gas. Gazovaia promyshlennost' = Gas Industry , 2002, no. 11, pp. 72-75. (in Russian).
  5. Burtsev S.A. Issledovanie temperaturnogo razdeleniia v potokakh szhimaemogo gaza. Kand. diss . [The research of temperature separation in coercible gas flows. Cand. diss.]. Moscow, Bauman MSTU, 2001. 124 p. (in Russian , unpublished ).
  6. Burtsev S.A. Investigation of the operation of temperature lamination device working on the natural gas. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2004, no. 9. DOI:10.7463/0904.0516097 (in Russian).
  7. Burtsev S.A. Investigation of the operation of temperature lamination device working on the water and natural gas. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2005, no. 5. DOI:10.7463/0505.0529473 (in Russian).
  8. Zditovets A.G., Titov A.A. Experimental Study of a Gas-Dynamic Method for an Air Stream Energy Separation. Teplovye protsessy v tekhnike = Thermal Processes in Engineering , 2013, no. 9, pp. 391-397. (in Russian).
  9. Vinogradov Y.A., Zditovets A.G., Strongin M.M. Experimental investigation of the temperature stratification of an air flow through a supersonic channel with a central body in the form of a porous permeable tube. Izvestiya RAN. Mekhanika zhidkosti i gaza , 2013, no. 5, pp. 134-145. ( English version of journal: Fluid Dynamics , 2013, vol. 48, no. 5, pp. 687-696. DOI:10.1134/S0015462813050128).
  10. Vinogradov U.A., Egorov K.S., Popovich S.S., Stongin M.M. Heat and Mass Research on Permeable Surface in Supersonic Boundary Layer. Teplovye protsessy v tekhnike = Thermal Processes in Engineering , 2010, no. 1, pp. 7-9. (in Russian).
  11. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow, Energiya Publ., 1975. 488 p. (in Russian).
  12. Makarov M.S. Gazodinamicheskaya temperaturnaya stratifikatsiya v sverkhzvukovykh potokakh. Avtoreferat kand. diss. [Gas dynamic method of temperature stratification in supersonic. Abstract of cand. diss.]. Novosibirsk, 2007. 16 p. (in Russian, unpublished).
  13. Tournier J.P., Mohamed S.E. Properties of noble gases and binary mixtures for closed Brayton Cycle application. Energy Conversion and Management , 2008, vol. 49, iss. 3, pp. 469-492. DOI: 10.1016/j.enconman.2007.06.050
  14. Tournier J.P., Mohamed S.E. Noble gas binary mixtures for gas-cooled reactor power plants. Nuclear Engineering and Design , 2008, vol. 238, iss. 6, pp. 1353-1372. DOI: 10.1016/j.nucengdes.2007.10.021
  15. Taylor M.F., Bauer K.E., McEligot D.M. Internal forces convection to low-Prandl-number gas mixtures. International Journal of Heat and Mass Transfer , 1988, vol. 31, no.1, pp. 13-25. DOI:10.1016/0017-9310(88)90218-9
  16. Patancar S. Numerical heat transfer and fluid flow . New York, Hemisphere Publishing Corporation, 1980. 124 p. (Russ. ed.: Patancar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti . Moscow, Energoatamizdat Publ ., 1984. 152 p).
  17. Belov I.A., Isaev S.A. Modelirovanie turbulentnykh techenii [Modeling of turbulent flows]. St. Petersburg, Baltic State Tech. University Publ., 2001. 108 p. (in Russian).
  18. McEligot D.M., Taylor M.F. The turbulent Prandtl number in the near-wall region for low-Prandl-number gas mixtures. International Journal of Heat and Mass Transfer , 1996, vol. 39, no. 6, pp. 1287-1295. DOI: 10.1016/0017-9310(95)00146-8
  19. Vargaftik N.B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei [Catalogue of thermophysical properties of gases and liquids]. Moscow, Nauka Publ., 1972. 720 p. (in Russian).
  20. Burtsev S.A., Kochurov D.S., Schegolev N.L. Investigation of the helium proportion influence on the Prandtl number value of gas mixtures. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU, 2015, no. 5, pp. 314-329. DOI: 10.7463/0514.0710811 (in Russian ).
  21. Johnson P.K. A Method of Calculating Viscosity and Thermal Conductivity of Helium-Xenon Gas Mixture. Technical Report NASA/CR-2006-214394 . NASA, 2006. 13 p.
  22. Popovich S.S. Experimental Study of Influence of Falling Shock Wave on Adiabatic Wall Temperature of a Supersonic Air Flow around Plane Surface. Teplovye protsessy v tekhnike = Thermal Processes in Engineering , 2014, no. 3, pp. 98-104. (in Russian).
  23. Zditovetz A.G., Vinogradov Yu. A., Strongin M.M., Titov A.A., Medvetskaya N.V. Experimental Study of Heat Transfer Features at Helium Injection through a Permeable Surface in Supersonic Argon Flow. Teplovye protsessy v tekhnike = Thermal Processes in Engineering , 2012, no. 6, pp. 253-261. (in Russian).
  24. Leont’ev A.I., Lushchik V.G., Makarova M.S. Numerical investigation of tube flow with suction through permeable walls. Izvestiya RAN. Mekhanika zhidkosti i gaza , 2014, no. 3, pp. 74-81. ( English version of journal: Fluid Dynamics , 2014, vol. 49, iss. 3, pp. 362-368. DOI: 10.1134/S0015462814030077 ).
Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)