Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Investigating the Effect of the Binary Mixtures Composition of Noble Gases on Their Thermodynamic and Transport Properties

# 11, November 2015
DOI: 10.7463/1115.0822897
Article file: SE-BMSTU...o237.pdf (1202.63Kb)
authors: S.A. Burtsev1,2,*, D.S. Kochurov1,2, N.L. Schegolev1



1 Bauman Moscow State Technical University, Moscow, Russia

2 Institute of Mechanics of Lomonosov Moscow State University, Moscow, Russia

The paper presents possible application fields of the binary noble gas mixtures with low Prandtl numbers. It shows that it is expedient to select these mixtures as the working fluids for closed Brayton cycle gas-turbine installations, thermo-acoustic engines and for the gas dynamic energy separation device (Leontiev tube). As follows from the analysis, He-Ar, He-Kr, and He-Xe mixtures have proven to be the most attractive choice. The paper has analyzed the calculation results for coefficient of dynamic viscosity, coefficient of thermal conductivity, and for heat capacity at constant pressure for the given mixtures in terms of mixture molecular weights at pressures of 2MPa and 7MPa and temperatures of 400 and 1200°K. According to data of experiments and calculations available in public sources published by another authors, the results are verified. It was found that at constant pressure within the examined range of parameters (i.e. pressure, temperature, mixture molecular weight) the obtained heat capacity values are in good agreement with the values of the verification data. In calculating dynamic viscosity coefficient for any pressure and temperature the utilized technique provides results for He-Ar and He-Kr mixtures within the entire range of the molecular weights, which are, essentially, as good as shown by international verification techniques. However, at high pressures and low temperatures for He-Xe mixture with molecular weights close to the pure Xe the divergence was found to be as high as 25 % while for other parameter intervals under consideration and with the same mixture the difference does not exceed 10 %. A good agreement with the verification data is observed for the values of a thermal conductivity coefficient of He-Ar and He-Kr mixtures for any value of parameters, while for He-Xe mixture with molecular weights close to 60 g/mole independently of pressure the divergence can reach 30 % for 1200°K and 20 % for 400°K. It is shown that for a He-Xe mixture, with increasing temperature for all molecular masses, the underestimation of the thermal conductivity coefficient values may partially compensate for underestimation of the dynamic viscosity coefficient values, thereby leading to the net inaccuracy in Prandtl number calculations at most 15 % for any value of parameters under consideration.

References
  1. Mason L.S., Shaltens R.K., Dolce J.L., Cataldo R.L. Status of Brayton cycle power conversion development at NASA GRC. Space Technology and Applications International Forum (2002): AIP Conference Proceedings , 2002, vol. 608, pp. 965-971. DOI:10.1063/1.1449813
  2. Arbekov A.N., Leontiev A.I. Development of space gas turbine plants in the works of V.L. Samsonov. Trudy MAI , 2011, no. 43. Available at: http://www.mai.ru/science/trudy/published.php?ID=24713, accessed 07.07.2015. (in Russian).
  3. Tijani M.E.H., Zeegers J.C.H., de Waele A.T.A.M. Prandtl number and thermoacoustic refrigerators. The Journal of the Acoustical Society of America , 2002, vol. 112, no. 1, pp. 134-143. DOI:10.1121/1.1489451
  4. Gaicobbe F.W. Estimation of Prandtl numbers in binary mixtures of helium and other noble gases. The Journal of the Acoustical Society of America , 1994, vol. 96, no. 6, pp. 3568-3580.10.1121/1.410615
  5. Leont'ev A.I. Sposob temperaturnoi stratifikatsii gaza i ustroistvo dlia ego osushchestvleniia (Truba Leont'eva) [The method of temperature stratification of gas and device for its implementation (Pipe Leontiev)]. Patent RF, no. 2106581. 1998. (in Russian).
  6. Leont'ev A.I. Gas-dynamic method of energy separation of gas flows. Teplofizika vysokikh temperature , 1997, vol. 35, no. 1, pp. 157-159. ( English version of journal: High Temperature , 1997, vol. 35, no. 1, pp. 155-157. ).
  7. Bammert K., Rurik J., Griepentrog H. Highlights and future developments of closed-cycle gas turbines. Journal of Engineering for Power , 1974, vol . 96, no . 4, pp. 342-348. DOI: 10.1115/1.3445856
  8. Arbekov A.N., Burtsev S.A. Research of the working cycle of a closed gas turbine in a tri-generation unit operating on a sequential scheme. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU, 2012, no. 3. Available at: http://technomag.edu.ru/doc/359008.html, accessed 07.07.2015. (in Russian).
  9. Arbekov A.N., Burtsev S.A. Research of Closed Gas Turbine Cycle of a Trigeneration Unit Operating on Parallel Schema. Teplovye protsessy v tekhnike = Thermal Processes in Engineering , 2012, vol. 4, no. 7, pp. 326-331. (in Russian)
  10. Arbekov A.N. Selection of the working medium for 6- to 12-kW closed organic-fuel-powered gas-turbine plants. Teplofizika vysokikh temperature , 2014, vol. 52, no. 1, pp. 131-135. DOI: 10.7868/S0040364414010013 ( English version of journal: High Temperature , 2014, vol. 52, no. 1, pp. 121-125. DOI:10.1134/S0018151X14010015).
  11. Tournier J. -M., El-Genk M.S., Gallo B.M. Best estimates of Binary Gas Mixtures Properties for Closed Brayton Cycle Space Application. 4th International Energy Conversion Engineering Conference (San Diego, California, 26-29 June 2006): AIAA Paper , 2006, pp. 4154-4167.
  12. Burtsev S.A., Kochurov D.S., Schegolev N.L. Investigation of the helium proportion influence on the Prandtl number value of gas mixtures. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU, 2015, no. 5, pp. 314-329. DOI: 10.7463/0514.0710811 (in Russian ).
  13. Arbekov A.N., Novickii B.B. Experimental study of the characteristics of the small-scale centrifugal-flow compressor. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU, 2012, no. 8, pp. 491-504. DOI: 10.7463/0812.0432308 (in Russian).
  14. El-Genk M.S., Tournier J-M. Selection of noble gas binary mixtures for Brayton space nuclear power systems. 4th international Energy Conversion Engineering Conference (San Diego, California, 26-29 June 2006): AIAA Paper , 2006, pp. 4168-4176. DOI: 10.2514/6.2006-4168
  15. Arbekov A.N., Surovtsev I.G., Dermer P.B. Efficiency of heat transfer in recuperative heat exchangers with high-speed gas flows at low prandtl numbers. Teplofizika vysokikh temperature , 2014, vol. 52, no. 3, pp. 463-468. DOI:10.7868/S004036441403003X( English version of journal: High Temperature , 2014, vol. 52, no. 3, pp. 447-452. DOI:10.1134/S0018151X14030031 ).
  16. Harty R., Mason L.S. 100-kWe lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion. Proceedings of the 10th Symposium on Space Nuclear Power and Propulsion: AIP Conference Proceedings , 1993, vol. 271, pp. 1065-1071. DOI:10.1063/1.43087
  17. Kilstra J.F., Verkooijen A.H.M. Conceptual Design for the Energy Conversion System of a Nuclear Gas Turbine Cogeneration Plant. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy , 2000, vol. 214, no. 5, pp. 401-411. DOI: 10.1243/0957650001537967
  18. Burtsev S.A., Leont'ev A.I. Thermal stratification in supersonic gas flow. Izvestiia RAN. Energetika = Proceedings of the Russian Academy of Sciences. Power Engineering , 2000, no. 5, pp. 101-113. (in Russian).
  19. Burtsev S.A. Exploring ways to improve efficiency of gasdynamic energy separation. Teplofizika vysokikh temperature , 2014, vol. 52, no. 1, pp. 14-21. DOI: 10.7868/S0040364414010062 ( English version of journal: High Temperature , 2014, vol. 52, no. 1, pp. 12-18. DOI: 10.1134/S0018151X14010064 ).
  20. Burtsev S.A. Analysis Technique for Devices for Gas-Dynamic Temperature Stratification in Real Gas Flow. Teplovye protsessy v tekhnike = Thermal Processes in Engineering , 2013, no. 9, pp. 386-390. ( in Russian ).
  21. Burtsev S.A. Analysis of influence of different factors on the value of the temperature recovery factor at object surfaces in case of an airflow. Review. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU, 2004, no. 11. DOI:10.7463/1104.0551021(in Russian ).
  22. Vinogradov Y.A., Zditovets A.G., Strongin M.M. Experimental investigation of the temperature stratification of an air flow through a supersonic channel with a central body in the form of a porous permeable tube. Izvestiya RAN. Mekhanika zhidkosti i gaza , 2013, no. 5, pp. 134-145. ( English version of journal: Fluid Dynamics , 2013, vol. 48, no. 5, pp. 687-696. DOI: 10.1134/S0015462813050128 ).
  23. Burtsev S.A. Issledovanie temperaturnogo razdeleniia v potokakh szhimaemogo gaza . Kand. diss. [Investigation of temperature separation in the flows of compressible gas. Cand. diss.]. Moscow, 2001. 124 p. ( in Russian, unpublished).
  24. Volchkov E.P., Makarov M.S. Gas-dynamic temperature stratification in a supersonic flow. Izvestiia RAN. Energetika = Proceedings of the Russian Academy of Sciences. Power Engineering , 2006, no . 2 , pp . 19-31. ( in Russian ).
  25. Zditovets A.G., Titov A.A. The influence of heat insulated rod surface shape in the supersonic flow on the temperature recovery factor. Izvestiia RAN. Energetika = Proceedings of the Russian Academy of Sciences. Power Engineering , 2007, no. 2, pp. 111-117. (in Russian).
  26. Burtsev S.A., Vasil'ev V.K., Vinogradov Yu.A., Kiselev N.A., Titov A.A. Experimental study of parameters of surfaces coated with regular relief. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2013, no. 1, pp. 263-290. DOI: 10.7463/0113.0532996 (in Russian).
  27. Kochurov D.S. [Investigation of transport and thermophysical properties of binary mixtures of inert gases with the use of Tetra automated system of calculation]. Molodezhnyy nauchno-tekhnicheskiy vestnik. MGTU im. N.E. Baumana = Youth Science and Technology Herald of the Bauman MSTU , 2014, no. 2. Available at: http://sntbul.bmstu.ru/doc/708327.html, accessed 07.07.2015. (in Russian).
  28. Diaz G., Campo A. Artificial neural networks to correlate in-tube turbulent forced convection of binary gas mixtures. International Journal of Thermal Sciences , 2009, vol. 48, iss. 7, pp. 1392-1397.
  29. Jean-Michel P. Tournier, Mohamed S. El-Genk. Properties of noble gases and binary mixtures for closed Brayton Cycle applications. Energy Conversion and Management , 2008, vol. 49, pp. 469-492.
  30. Mohamed S. El-Genk, Jean-Michel Tournier Noble-Gas Binary Mixtures for Closed-Brayton-Cycle Space Reactor Power Systems. Journal of Propulsion and Power , 2007, vol. 23, no. 4, pp. 863-873. DOI: 10.2514/1.27664
  31. Picket P.E., Taylor M.F., McEligot D.M. Heated turbulent flow of helium-argon mixtures in tubes. International Journal of Heat and Mass Transfer , 1979, vol. 22, pp. 705-719.
  32. Bammert K., Klein R. The influence of He-Ne, He-N2 and He-CO2gas mixtures on closed cycle gas turbines. ASME reference paper 74-GT-124 . 1974, pp. 1-8.
  33. Zditovetz A.G., Vinogradov Yu. A., Strongin M.M., Titov A.A., Medvetskaya N.V. Experimental Study of Heat Transfer Features at Helium Injection through a Permeable Surface in Supersonic Argon Flow. Teplovye protsessy v tekhnike = Thermal Processes in Engineering , 2012, no. 6, pp. 253-261. (in Russian).
  34. Melissa A. Haire, David D. Vargo. Review of helium and xenon pure component and mixture transport properties and recommendation of estimating approach for Project Prometheus (viscosity and thermal conductivity). Space Technology and Applications International Forum (2007): AIP Conference Proceedings , 2007, vol. 880, pp. 559-570. DOI: 10.1063/1.2437494
  35. Johnson P.K. A method for calculating viscosity and thermal conductivity of a helium-xenon gas mixture. Final contractor report . NASA Center for AeroSpace Information. 2006. 19 p.
  36. Hirshfelder J.O., Curtiss Ch.F., Bird R.B. Molecular theory of gases and liquids . New York, John Wiley and Sons, 1954; London, Chapman and Hall, 1954. (Russ. ed.: Hirshfelder J.O., Curtiss Ch.F., Bird R.B. Molekulyarnaya teoriya gazov i zhidkostei . Moscow, Izd-vo inostrannoi literatury Publ ., 1961. 931 p .).
  37. Isaev S.I., Mironov B.M., Nikitin V.M., Khvostov V.I. Osnovy termodinamiki, gazovoi dinamiki i teploperedachi [ Fundamentals of thermodynamics, gas dynamics and heat transfer ]. Moscow, Mashinostroenie Publ., 1968. 275 p. (in Russian).
  38. Vargaftik N.B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei [Handbook of thermophysical properties of gases and liquids]. Moscow, Nauka Publ., 1972. 720 p. (in Russian).
  39. Rabinovich V.A., Vasserman A.A., Nedostup V.N., Veksler L.S. Teplofizicheskie svoistva neona, argona, kriptona i ksenona [ Thermophysical properties of neon, argon, krypton and xenon ]. Moscow, Standards Publishing House, 1976. 636 p. (in Russian).
Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)