Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Techniques of Ultrasound Cavitation Control

# 02, February 2015
DOI: 10.7463/0215.0759806
Article file: SE-BMSTU...o100.pdf (919.50Kb)
author: S.P. Skvortsov

The control methods of ultrasonic cavitation applied now within the range from 20 kHz to 80 kHz use either control of ultrasound source parameters (amplitude, acoustic power, etc.) or control of one of the cavitation effects (erosion of materials, sonoluminescence, power of acoustic noise, etc.). These methods provide effective management of technological processes, however, make it impossible to relate the estimated effect with parameters of pulsations of cavitation bubbles. This is, mainly, due to influence of a number of uncontrollable parameters, in particular, such as temperature, composition of liquid, gas content, etc. as well as because of the difficulty to establish interrelation between the estimated effect and parameters of pulsations. As a result, in most cases it is difficult to compare controlled parameters of ultrasonic cavitation among themselves, and quantitative characteristics of processes become depending on the type of ultrasonic installation and conditions of their measurement.
In this regard, methods to determine parameters of bubble pulsations through sounding a cavitation area by low-intensity laser radiation or to record cavitation noise sub-harmonics reflecting dynamics of changing radius of cavitation bubbles are of interest.
The method of optical sounding, via the analysis of spectral components of a scattered signal recorded by a photo-detector, allows us to define a phase of the bubbles collapse with respect to the sound wave and a moving speed of the bubbles wall, as well as to estimate a cavitation index within the light beam section. The method to record sub-harmonicas of cavitation noise allows us to define parameters of pulsations, average for cavitation areas.
The above methods allow us both to study mechanisms of cavitation action and to form quantitative criteria of its efficiency based on the physical processes, rather than their consequences and are convenient for arranging a feedback in the units using ultrasonic cavitation.

References
  1. Rozenberg L.D., ed. Fizika i tekhnika moshchnogo ul'trazvuka. V 3 t. T. 2. Moshchnye ul'trazvukovye polya [Physics and Technics of High Intensity Ultrasound. In 3 vols. Vol. 2. High Intensity Ultrasound Fields]. Moscow, Nauka Publ., 1968. 267 p. (in Russian).
  2. Margulis M.A. Zvukokhimicheskie reaktsii i sonolyuminestsentsiya [Sound indused chemical reactions and sonoluminiscence]. Moscow, Khimiya Publ., 1986. 288 p. (in Russian).
  3. Hill C.R., ed. Physical Principles of Medical Ultrasonics . Chichester, UK, Ellis Horwood Limited, 1986. 282 p. (Russ. ed.: Hill C.R., ed. Primenenie ul'trazvuka v meditsine: fizicheskie osnovy . Moscow, Mir Publ., 1989. 568 p.).
  4. Akopyan V.B., Ershov Yu.A. Osnovy vzaimodeistviya ul'trazvuka s biologicheskimi ob"ektami [Foundations of Ultrasound – Biological Tissues Interaction]. Moscow, Bauman MSTU Publ. , 2005. 222 p. (in Russian).
  5. Savrasov G.V. Tekhnologii ul'trazvukovoi khirurgii [Ultrasound Surgery Techniques]. Moscow , Bauman MSTU Publ . , 2009. 36 p . ( in Russian ).
  6. Margulis M.A. Sonoluminescence. Uspekhi fizicheskikh nauk , 2000, vol. 170, no. 3, pp. 263-287. (English version of journal: Physics-Uspekhi , 2000, vol. 43, no. 3, pp. 259-282. DOI: 10.1070/PU2000v043n03ABEH000455
  7. Keller O.K., Kratysh G.S., Lubyanitskii G.D. Ul'trazvukovaya ochistka [Ultrasound Cleaning]. Leningrad, Mashinostroenie Publ ., 1977. 184 p. (in Russian).
  8. Lanin V.L., Dezhkunov N.V., Tomal' V.S. Instrument maintenance of ultrasonic influences parameters measurement in technological processes. Tekhnologiya i konstruirovanie v elektronnoi apparature = Technology and design of electronic equipment , 2008, no. 2, pp. 51-55. (in Russian).
  9. Abramov O.V., Abramov V.O., Mullakaev M.S., Artem'ev V.V. The efficiency of ultrasonic oscillations transfer into the load. Akusticheskii zhurnal , 2009, vol. 55, no. 6, pp. 828-844. (English version of journal: Acoustical Physics , 2009, vol. 55, no. 6, pp. 894-909. DOI:10.1134/S1063771009060244 ).
  10. Batchelor G.K. Compression waves in a suspension of gas bubbles in liquid. Fluid Dynamics Transactions. Warszawa, 1967, vol. 4, pp. 425-445.
  11. Niemczewski B. Cavitation intensity of water under practical ultrasonic cleaning conditions. Ultrasonics Sonochemistry , 2014, vol. 21, iss. 1, pp. 354-359.
  12. Overton G.D.N., Williams P.R., Trevena D.H. The influence of cavitation history and entrained gas on liquid tensile strength. Journal of Physics D: Applied Physics , 1984, vol. 17, iss. 5, article no. 012, pp. 979-987. DOI: 10.1088/0022-3727/17/5/012
  13. Babichev A.P., Babushkina N.A., Bratkovskii A.M., et al. Fizicheskie velichiny: Spravochnik [Physical Magnitudes: Reference Book]. Moscow, Energoatomizdat Publ., 1991. 1232 p. (in Russian).
  14. Pasynskii A.G. Kolloidnaya khimiya [Colloid Chemistry]. Moscow, Vysshaya shkola Publ., 1959. 265 p. (in Russian).
  15. Niemczewski B. Maximisation of cavitation intensity in ultrasonic cleaning in aqueous solutions through selection of salt solution. Transactions of the Institute of Metal Finishing , 2011, vol. 89, iss. 2, pp. 104-108.
  16. Margulis I.M., Margulis M.A. Measurement of acoustic power in studying cavitation processes. Akusticheskii zhurnal, 2005, vol. 1, no. 6, pp. 802-812. (English version of journal: Acoustical Physics , 2005, vol. 51, no. 6, pp. 695-704. DOI:10.1134/1.2130901).
  17. Hueter T.F., Bolt R.H. Sonics. Techniques for the use of sound and ultrasound in engineering and science . N.Y., John Wiley & Sons ; London, Chapman & Hall, 1955. 456 p.
  18. Margulis I.M., Margulis M.A. Luminescence mechanism of acoustic and laser-induced cavitation. Akusticheskii zhurnal , 2006, vol. 52, no. 3, pp. 340-350. (English version of journal: Acoustical Physics , 2006, vol. 52, no. 3, pp. 283-292. DOI:10.1134/S1063771006030080).
  19. Son E., Lim M., Khim J., Ashokkumar M. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreaktor. Ultrasonics Sonochemistry , 2012, vol. 19, iss. 1, pp. 16-21. DOI:10.1016/j.ultsonch.2011.06.001
  20. Sankin G.N. Cavitation under spherical focusing of acoustic pulses. Akusticheskii zhurnal , 2006, vol. 52, no. 1, pp. 105-116. (English version of journal: Acoustical Physics , 2006, vol. 52, no. 1, pp. 93-103. DOI:10.1134/S1063771006010131).
  21. Macedo R., Verhaagen B., Rivas D.F., Versluis M., Wesselink P., van der Sluis L. Cavitation measurement during sonic and ultrasonic activated irrigation. Journal of Endodontics , 2014, vol. 40, iss. 4, pp. 580-583.
  22. Suslick K.S., Eddingsaas N.C., Flannigan D.J., Hopkins S.D., Xu H. Extreme conditions during multi-bubble cavitation: Sonoluminiscence as a spectroscopic probe. Ultrasonic Sonochemistry , 2011, vol. 18, iss. 4, pp. 842-846. DOI: 10.1016/j.ultsonch.2010.12.012
  23. Komarov S., Oda K., Ishiwata Y., Dezhkunov N. Characterization of acoustic cavitation in water and molten aluminum alloy. Ultrasonics Sonochemistry , 2013, vol. 20, iss. 2, pp. 754-761. DOI: 10.1016/j.ultsonch.2012.10.006
  24. Rozenberg L.D., ed. Fizika i tekhnika moshchnogo ul'trazvuka. V 3 t. T. 3. Fizicheskie osnovy ul'trazvukovoi tekhnologii [Physics and Technics of High Intensity Ultrasound. In 3 vols. Vol. 3. Physical Foundamentals of Ultrasound Technology]. Moscow, Nauka Publ., 1970. 685 p. (in Russian).
  25. Pereira A.H., Tirapelli C.B., Rodolpho L.A. Ultrasonic dental scaler performance assessment with an innovative cavitometer. American Journal of Applied Sciences , 2010, vol. 7, iss. 3, pp. 290-300.
  26. Tzanakis I.A., Eskin D.G., Georgoulas A.B., Fytanidis D.K. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble. Ultrasonics Sonochemistry , 2014, vol. 21, iss. 2, pp. 866-878. DOI: 10.1016/j.ultsonch.2013.10.003
  27. Sijl J., Vos H.J., Rozendal T., de Jong N., Lohse D., Versluis M. Combined optical and acoustical detection of single microbubble dynamics. Journal of the Acoustical Society of America , 2011, vol. 130, iss. 5, pp. 3271-3281.
  28. Skvortsov S.P., Nechaev V.I. Cavitation intensity measuremet by means of cavity noise spectra analysis. 1 6-ya Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “Mediko-tekhnicheskie tekhnologii na strazhe zdorov'ya”: mater . [Proc. of the 16th International Scientifical and Engineering Conference “Medical and Engineering techniques for health guarding”]. Moscow, Bauman MSTU Publ. , 2014, pp. 34-36. (in Russian).
  29. Skvortsov S.P., Nechaev V.I., Maslenkov N.S., Kravchenko A.P. Experimental study of bubble dynamics in ultrasound cavitation area. 16-ya Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “Mediko-tekhnicheskie tekhnologii na strazhe zdorov'ya”: mater . [Proc. of the 16th International Scientifical and Engineering Conference “Medical and Engineering techniques for health guarding”]. Moscow, Bauman MSTU Publ. , 2014, pp. 36-38. (in Russian).
  30. Skvortsov S.P., Zmievskoi G.N., Voronin A.A. Low-frequency cavitation effects optical control. 3 -ya Rossiiskaya nauchno-tekhnicheskaya konferentsiya “Mediko-tekhnicheskie tekhnologii na strazhe zdorov'ya”: mater. Ch.1. [Proc. of the 3rd International Scientifical and Engineering Conference “Medical and Engineering techniques for health guarding”. Pt. 1]. Moscow, Bauman MSTU Publ. , 2001, p. 38. (in Russian).
  31. Zmievskoi G.N., Lomakin A.A., Tereshkina D.V., Skvortsov S.P. Cavitation area optical control in ultrasound surgery. Biomeditsinskaya radioelektronika = Biomedical Radioelectronics, 2003, no. 9, pp. 18-25. (in Russian).
  32. Zmievskoi G.N., Krylov Yu.V., Skvortsov S.P. Cavitation Parameters Measurements Potential Possibilities Research by Means of Optical Testing in Ultrasound Surgery and Therapy. Biomeditsinskaya radioelektronika = Biomedical Radioelectronics , 2006, no. 10, pp. 32-36. (in Russian).
  33. Zmievskoy G., Skvortsov S. Ultrasound Cavitation Detection by Means of Optical Probing. Proceedings of the 6th Russian-Bavarian Conference on Biomedical Engineering . Moscow, 2010, pp. 121-122.
  34. Skokov V.N., Reshetnikov A.V., Vinogradov A.V., Koverda V.P. Fluctuation dynamics and 1/f spectra characterizing the acoustic cavitation of liquids. Akusticheskii zhurnal , 2007, vol. 53, no. 2, pp. 168-172 . (English version of journal: Acoustical Physics , 2007, vol. 53, no. 2, pp. 136-140. DOI:10.1134/S1063771007020042 ).

 

Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)