Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Model of Light Scattering in Cavitation Area

# 03, March 2015
DOI: 10.7463/0315.0759834
Article file: SE-BMSTU...o119.pdf (925.45Kb)
author: S.P. Skvortsov

The offered work presents analysis of extinction mechanisms and justification of light scattering model in ultrasonic cavitation area to justify a control method of ultrasonic cavitation through its optical sounding by low-intensity laser radiation and through photo-detector record of last radiation.
The analysis of the extinction mechanisms has shown that the most essential mechanism causing a change of the transmission coefficient with time is dispersion on pulsating cavitation bubbles. Other extinction mechanisms lead to the time-constant reduction of last radiation intensity and can be taken into consideration by normalizing a recorded transmission coefficient for a previously measured liquid transmission coefficient when there is no cavitation.
The feature of light scattering on the cavitation bubbles is primary dispersion in a forward direction that is connected with great values of bubbles radius from units to hundreds of micrometers. In case of single bubbles, dispersion can be described by Mi's theory, and, as to the cavitation area, it is reasonable to use the theory of V. Tversky for multiple light scattering. Thus, dispersion section, according to the paradox of extinction, can be considered to be equal to doubled geometrical section of a bubble. With increasing bubble radius the transmission coefficient monotonically decreases. So, the law of bubble pulsations and the model of light scattering define the law of changing transmission coefficient.
Therefore, the cavitation area with its optical sounding acts as a peculiar opto-acoustic modulator. Thus, the demodulated signal of a photo-detector comprises information on pulsations of bubbles.
The paper examines the influence of cavitation area thickness and bubbles concentration on the transmission coefficient. It shows a type of transmission coefficient dependence on the radius of cavitation bubbles.
The optical sounding method is attractive because it allows us to obtain data on the radius of pulsating bubbles in real time, without dithering in the acoustic field. Thus, data acquisition for the separate cavitation area parts determined by the probing beam diameter is possible.
The offered model of light scattering is used as a basis to formulate requirements for a source of the probing radiation and a photo-detector.

References
  1. Margulis M.A. Zvukokhimicheskie reaktsii i sonolyuminestsentsiya [Sound indused chemical reactions and sonoluminiscence]. Moscow, Khimiya Publ., 1986. 288 p. (in Russian ) .
  2. Rozenberg L.D., ed. Fizika i tekhnika moshchnogo ul'trazvuka. V 3 t. T. 2. Moshchnye ul'trazvukovye polya [Physics and Technics of High Intensity Ultrasound. In 3 vols. Vol. 2. High Intensity Ultrasound Fields]. Moscow, Nauka Publ., 1968. 267 p. (in Russian).
  3. Skvortsov S.P. Control techniques of ultrasound cavitation. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU, 2015, no. 2. (in print)
  4. Akopyan V.B., Ershov Yu.A. Osnovy vzaimodeistviya ul'trazvuka s biologicheskimi ob"ektami [Foundations of Ultrasound – Biological Tissues Interaction]. Moscow, Bauman MSTU Publ. , 2005. 222 p. (in Russian) .
  5. Savrasov G.V. Tekhnologii ul'trazvukovoi khirurgii [Ultrasound Surgery Techniques]. Moscow , Bauman MSTU Publ . , 2009. 36 p . ( in Russian) .
  6. Skvortsov S.P., Zmievskoi G.N., Voronin A.A. Low-frequency cavitation effects optical control. 3 -ya Rossiiskaya nauchno-tekhnicheskaya konferentsiya “Mediko-tekhnicheskie tekhnologii na strazhe zdorov'ya”: mater. Ch.1. [Proc. of the 3rd International Scientifical and Engineering Conference “Medical and Engineering techniques for health guarding”. Pt. 1]. Moscow, Bauman MSTU Publ. , 2001, p. 38. (in Russian).
  7. Zmievskoi G.N., Lomakin A.A., Tereshkina D.V., Skvortsov S.P. Cavitation area optical control in ultrasound surgery. Biomeditsinskaya radioelektronika = Biomedical Radioelectronics, 2003, no. 9, pp. 18-25. (in Russian) .
  8. Zmievskoi G.N., Krylov Yu.V., Skvortsov S.P. Cavitation Parameters Measurements Potential Possibilities Research by Means of Optical Testing in Ultrasound Surgery and Therapy. Biomeditsinskaya radioelektronika = Biomedical Radioelectronics , 2006, no. 10, pp. 32-36. (in Russian) .
  9. Zmievskoy G., Skvortsov S. Ultrasound Cavitation Detection by Means of Optical Probing. Proceedings of the 6th Russian-Bavarian Conference on Biomedical Engineering . Moscow, 2010, pp. 121-122 .
  10. Born M., Wolf E. Principles of Optics . Pergamon Press, 1970. (Russ. ed.: Born M., Wolf E. Osnovy optiki . Moscow, Nauka Publ., 1973. 719 p.).
  11. Margulis M.A. Sonoluminescence. Uspekhi fizicheskikh nauk , 2000, vol. 170, no. 3, pp. 263-287. (English version of journal: Physics-Uspekhi , 2000, vol. 43, no. 3, pp. 259-282. DOI: 10.1070/PU2000v043n03ABEH000455 ).
  12. Ishimaru A. Wave Propagation and Scattering in Random Media. Vol. 1. Single Scattering and Transport Theory . N.Y., Academic Press, 1978. (Russ. ed.: Ishimaru A. Rasprostranenie i rasseyanie voln v sluchayno neodnorodnykh sredakh. V 2 t. T. 1. Odnokratnoe rasseyanie i teoriya perenosa . Moscow, Mir Publ., 1981. 280 p . ) .
  13. Anan'ev S.S., Bernal' I.D., Demidov B.A., Kalinin Yu.G., Petrov V.A. Measurements of the refractive index of polymethylmethacrylate behind the front of a shock wave excited by a high-current electron beam. Zhurnal tekhnicheskoi fiziki , 2010, vol. 80, no. 5, pp. 111-116. (English version of journal: Technical Physics. The Russian Journal of Applied Physics , 2010, vol. 55, no. 5, pp. 703-708. DOI :10.1134/S1063784210050166).
  14. Belov N.P., Lapshov S.N., Patyaev A.Yu., Sherstobitova A.S., Yas'kov A.D. Temperature dependence of refraction index for ethylene glycol and propylene glycol aqueous solutions. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki = Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2012, no. 2 (78), pp. 138-139. (in Russian) .
  15. Ishimaru A. Wave Propagation and Scattering in Random Media. Vol. 2. Multiple Scattering, Turbulence, Rough Surfaces, and Remote-Sensing. N.Y., Academic Press, 1978. (Russ. ed.: Ishimaru A. Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh. V 2 t. T.2. Mnogokratnoe rasseyanie, turbulentnost', sherokhovatye poverkhnosti i distantsionnoe zondirovanie . Moscow, Mir Publ., 1981. 322 p.).

 

Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)