Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Study of Efficiency and Optimization Parameters of Laser Device for Measuring the Range Rate of a Spacecraft

# 06, June 2014
DOI: 10.7463/0614.0712240
Article file: Starovoytov_E.pdf (992.05Kb)
authors: E.I. Starovoitov, N.E. Zubov, V.V. Ivashov, A.V. Nikulchin

To replace the hand-held laser rangefinders on board transport spacecraft (SC) a laser rangefinder-speedometer (LRS) is developed and installed in the unpressurized area of SC to determine automatically the range rate. Crew, turning the active spacecraft by the video image that is formed by a docking camera, manually provides guidance of LRS to the passive SC. Using a generalized function of efficiency was estimated LRS characteristics. Comparison with the results of existing analogues shows that the LRS has the highest efficiency. As a result of relationship analysis of measuring speed and reliability accuracy of LRS laser source, Pareto sets are obtained, which enable providing the optimal operation conditions of a device It is found that the reliability function of LRS, which is equal to 0.999, is ensured at 1.0 s averaging time of range measurement and 0.8...0.9 m range measurement error. Increasing the averaging time of range measurement up to 1.5 s allows reliability function equal to 0.999 with the range measurement error of 2.5...2.5 m. Energy calculations are performed for 5 km range measurements on space complex with a complicated configuration such as the International Space Station (ISS) for the maximum and minimum value of the effective reflection area. When the laser pulse energy is 11.5 mJ for measurements of diffusely reflected signal at ranges of 5 km at least a signal/noise ratio is no less than 10. With LRS illuminating the angular reflector, a measurement range is of over 30 km. Because of a large number of the angular reflectors on the ISS body is considered the use of the geometric factor to protect the photo-detector overload when receiving a signal from the nearby angular reflector. It is found that when the length of the base between the receiving and transmitting optical apertures is equal to 39 mm, a photo-detector is protected from the overload at the pulse energies up to 11.5 mJ. The results of efficiency evaluation using the generalized functions for different types of laser sources are presented. Optical parametric oscillator based on a neodymium laser with diode pumping has the highest efficiency. With increasing pulse energy and reducing weight and size characteristics of fiber lasers, they may be used in LRS instead of solid-state lasers.

References
  1. Starovoytov E.I. [ Historical aspects of the development and principles of construction of airborne laser radar systems for the rendezvous and docking of spacecraft ]. Nauka i obrazovanie MGTU im. N.E. Baumana - Science and Education of the Bauman MSTU, 2013, no. 11. Available at: http://technomag.bmstu.ru/doc/654681.html, accessed 15.01.2014. (in Russian).
  2. Goncharov A.D., Gromov A.V., Zinov'ev V.V. Pribory artilleriyskoy razvedki [Devices of artillery reconnaissance]. St. Petersburg, ITMO University Publ., 2012. 232 p. (in Russian).
  3. Ivanov S.B., ed. Arms and Technologies of Russia. Vol. 11. Optoelectronic Systems and Laser Equipment . Moscow, Publishing House “Weapons and Technology”, 2005. 720 p. (in Russian).
  4. Goodman J.L. History of Space Shuttle Rendezvous . NASA, Lyndon B. Jonson Space Center, Houston, Texas, 2011. Available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110023479.pdf, accessed 01.05.2014.
  5. Borovikov S.M. Teoreticheskie osnovy konstruirovaniya, tekhnologii i nadezhnosti [ Theoretical foundations of design, technology and reliability ]. Minsk, Dizayn PRO Publ., 1998. 336 p. (in Russian).
  6. Starovoytov E.I., Savchuk D.V. [Pareto optimization of parameters of onboard laser ranging systems of spacecraft]. Nauka i obrazovanie MGTU im. N.E. Baumana - Science and Education of the Bauman MSTU, 2013, no. 4. DOI: 10.7463/0413.0574259 ( in Russian ).
  7. Starovoytov E.I., Savchuk D.V. [Study and optimization of using retroreflectors to localize space objects]. Kosmicheskaya tekhnika i tekhnologii , 2013 , no. 1 , pp . 38-43. ( in Russian ).
  8. Demidov DV [Search-surveillance optical finders]. Molodezhnyy nauchno-tekhnicheskiy vestnik. MGTU im. N.E. Baumana - Youth Scientific and Technical Bulletin of the Bauman MSTU , 2013, no. 8. Available at: http://sntbul.bmstu.ru/doc/580267.html, accessed 23.10.2013. (in Russian).
  9. Lazernyy dal'nomer s sinkhronnym nakopleniem ekho-signalov i vstroennym televizionnym kanalom [Laser rangefinder with simultaneous accumulation of echo signals and built-in TV channel]. Ryazan State Instrument-making Enterprise (RSIE): website. Available at: http://www.grpz.ru/production/civil/laser/15/, accessed 01.03.2014. (in Russian).
  10. Jenoptik Diode-pumped Er: Glass ELEM-DP 10k LRF. Available at: http://www.idssi.com/products/lrf/elem/elem-dp10k.aspx#.UxEKe-N_uNA, accessed 01.03.2014.
  11. K-Series Laser Rangefinders. Available at: http://cvs.flir.com/laser-rangefinder-mlr2k, accessed 01.03.2014.
  12. Stavrov A.A., Pozdnyakov M.G. [ Pulsed laser rangefinders for optical location systems ]. Doklady BGUIR , 2003, vol.1, no. 2, pp. 59-65. (in Russian).
  13. Vil'ner V., Laryushin A., Rud' E. [Methods for Increasing Impulse Lasers Range-Finders Accuracy]. Elektronika: nauka, tekhnologiya, biznes , 2008, no. 3, pp. 118-123.
  14. Starovoytov E.I. [Reliability analysis of onboard laser ranging systems for control systems by movement of spacecraft]. Nauka i obrazovanie MGTU im. N.E. Baumana - Science and Education of the Bauman MSTU , 2014, no. 2. DOI: 10.7463/0214.0699720 . (in Russian).
  15. Nogin V.D. Priniatie reshenii v mnogokriterial'noi srede: kolichestvennyi podkhod [Decision making in multicriteria environment: a quantitative approach]. Moscow, FIZMATLIT Publ ., 2004. 176 p. ( in Russian ).
  16. Polyakov V.M., Pokrovskiy V.P., Soms L.N. [Laser transmission module with a switchable directional pattern for the rangefinder of the Phobos–Ground spacecraft]. Opticheskiy zhurnal , 2011, vol. 78, no. 10, pp. 4 - 9. (English translation: Journal of Optical Technology , 2011, vol. 78, no. 10, pp. 640-643. DOI: 10.1364/JOT.78.000640 ).
  17. Impul'snye itterbievye lazery [Pulsed Ytterbium fiber laser]. NTO “IRE-Polyus”: website. Available at: http://www.ntoire-polus.ru/products_low_ili.html, accessed 27.02.2014. (in Russian).
  18. LIDAR-Erbium-Pulsed-Fiber-Lasers. Available at: http://www.vgen.com/wp-content/uploads/LIDAR-Erbium-Pulsed-Fiber-Lasers.pdf, accessed 27.02.2014.
  19. Starovoytov E.I., Savchuk D.V., Zubov N.E. [Selection of lasers for increasing the range of onboard laser ranging systems of space vehicles]. Nauka i obrazovanie MGTU im. N.E. Baumana - Science and Education of the Bauman MSTU, 2013, no. 8. DOI: 10.7463/0813.0609292 (in Russian).
  20. Nazarov V.N., Balashov I.F. Energeticheskaia otsenka impul'snykh lazernykh dal'nomerov [Energy assessment of pulsed laser range finders]. SPbGU ITMO, 2002. 38 p. Available at: http://de.ifmo.ru/bk_netra/start.php?bn=27, accessed 01.05.2014). (in Russian).
  21. Circle-Circle Intersection . MathWorld: website. Available at: http://mathworld.wolfram.com/Circle-CircleIntersection.html , accessed 01 .05. 20 1 4) .

 




Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)