Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Reliability analysis of onboard laser ranging systems for control systems by movement of spacecraft

# 02, February 2014
DOI: 10.7463/0214.0699720
Article file: Starovoitov_P.pdf (433.50Kb)
author: E.I. Starovoitov

The purpose of this paper is to study and find the ways to improve the reliability of onboard laser ranging system (LRS) used to control the spacecraft rendezvous and descent. The onboard LRS can be implemented with optical-mechanical scanner and without it. The paper analyses the key factors, which influence on the reliability of both LRS. Reliability of LRS is pretty much defined by the reliability of the laser source and its radiation mode. Solid-state diode-pumped lasers are primarily used as a radiation source. The radiation mode, which is defined by requirements for measurement errors of range and speed affect their reliability. The basic assumption is that the resource of solid state lasers is determined by the number pulses of pumping diodes. The paper investigates the influence of radiation mode of solid-state laser on the reliability function when measuring a passive spacecraft rendezvous dosing velocity using a differential method. With the measurement error, respectively, 10 m for range and 0.6 m/s for velocity a reliability function of 0.99 has been achieved. Reducing the measurement error of velocity to 0.5 m/s either results in reduced reliability function <0.99 or it is necessary to reduce the initial error of measurement range up to 3.5...5 m to correspond to the reliability function ≥ 0.995. For the optomechanical scanner-based LRS the maximum pulse repetition frequency versus the range has been obtained. This dependence has been used as a basis to define the reliability function. The paper investigates the influence of moving parts on the reliability of scanning LRS with sealed or unsealed optomechanical unit. As a result, it has been found that the exception of moving parts is justified provided that manufacturing the sealed optomechanical LRS unit is impossible. In this case, the reliability function increases from 0.99 to 0.9999. When sealing the opto-mechanical unit, the same increase in reliability is achieved through duplication of electric motors. Apart from the other publications in the field concerned, this paper discloses the reliability problems of onboard LRS of different types. The results obtained can be used in development of onboard LRS for the long range spacecrafts including those of aimed at missions beyond the Earth orbital operation.

References

  1. Pereira do Carmo J., Moebius B., Pfennigbauer M. Imaging LIDARs for Space Applications. Proc. of SPIE, 2008, vol. 7061, art no. 70610J-1. DOI: 10.1117/12.793701
  2. Christian J.A., Hinkel H., D'Souza C.N., Mauire S., Patangan M. The Sensor Test for Orion RelNav Risk Mitigation (STORRM) Development Test Objective. Available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110013437_2011014090.pdf , accessed 01.01.2014.
  3. Efanov V.V., Zakharov A.V., authors-compilers. Fobos Grunt: proekt kosmicheskoy ekspeditsii.V 2 t. T. 1 [Phobos Grunt: project of space expedition. In 2 vols. Vol.1]. Moscow, OOO "Polstar" Publ., 2011. 237 p.
  4. Malenkov M.I., Karatushin S.I., Tarasov V.M. Konstruktsionnye i smazochnye materialy kosmicheskikh mekhanizmov [Structural materials and lubricants of space mechanisms]. St. Petersburg, BSTU Publ., 2007. 54 p.
  5. Starovoytov E.I. Sposob obnaruzheniya passivnogo kosmicheskogo ob"ekta pri sblizhenii s nim aktivnogo kosmicheskogo apparata [Method for detecting a passive space object when approaching with him active spacecraft]. Patent RF, no. 2474844. 2011.
  6. Starovoytov E.I., Afonin V.V. Sposob obnaruzheniya passivnogo kosmicheskogo ob"ekta pri sblizhenii s nim aktivnogo kosmicheskogo apparata [Method for detecting a passive space object when approaching with him active spacecraft]. Patent RF, no. 2494415. 2013.
  7. Borovikov S.M. Teoreticheskie osnovy konstruirovaniya, tekhnologii i nadezhnosti [Theoretical foundations of design, technology and reliability]. Minsk, Dizayn PRO Publ., 1998. 336 p.
  8. Starovoitov E.I., Savchuk D.V., Zubov N.E. [Selection of lasers for increasing the range of onboard laser ranging systems of space vehicles]. Nauka i obrazovanie MGTU im. N.E. Baumana - Science and Education of the Bauman MSTU, 2013, no. 8. DOI: 10.7463/0813.0609292
  9. Gribkovskiy V.P. Poluprovodnikovye lazery [Semiconductor lasers]. Minsk, Universitetskoe Publ., 1988. 304 p.
  10. Kotsavets N., Buchenkov V., Iskandarov M., Nikitichev A., Sokolov E., Ter-Martirosyan A. [High-power semiconductor sources for pumping lasers]. Fotonika - Photonika, 2008, no. 3, pp.12-13.
  11. OAO "Nauchno-proizvodstvennoe predpriyatie "Inzhekt". Produktsiya. Nabornye reshetki lazernykh diodov kvazinepreryvnogo rezhima raboty [JSC "Scientific-production enterprise "Inject". Products. Composing lattice of laser diodes with quasicontinuous mode of operation]. Available at: http://www.inject-laser.ru/products/oscillators/subpage1.ivp , accessed 16.08.2013.
  12. ZAO "Poluprovodnikovye pribory" [CJSC "Semiconductor devices"]. Website. Available at: http://www.atcsd.ru/faq/#3 , accessed 30.08.2013.
  13. NTO "IRE-Polyus". Impul'snye itterbievye lazery [Scientific and Engineering Society "IRE-Polus". Pulsed fiber laser]. Available at: http://www.ntoire-polus.ru/products_low_ili.html , accessed 22.08.2013.
  14. Michel K., Ullrich A. Scanning time-of-flight laser sensor for rendezvous manoeuvres. In: Proc. of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation "ASTRA 2004". ESTEC, The Netherlands, Noordwijk, 2-4 November 2004. Available at: http://robotics.estec.esa.int/ASTRA/Astra2004/Papers/astra2004_S-02.pdf , accessed 01.01.2014.
  15. OAO "Mashinoapparat". Proektirovanie i proizvodstvo elektrodvigateley spetsial'nogo naznacheniya. Usloviya ekspluatatsii i trebovaniya k nadezhnosti [JSC "Mashinoapparat". Design and manufacture of special purpose electric motors. Operating conditions and reliability requirements]. Available at: http://mashap.maverick.ru/russian/spravka.htm , accessed 22.08.2013.
  16. Ivanov S.B., ed. Entsiklopediya 21 vek. Oruzhie i tekhnologii Rossii. T. 11. Optiko-elektronnye sistemy i lazernaya tekhnika [The 21 Century Encyclopedia. Russian's Arms and Technologies. Vol. 11. Optoelectronic systems and laser equipment]. Moscow, Publishing House "Weapon and technologies", 2005. 740 p.
  17. Parvulyusov Yu.B., Rodionov S.A., Soldatov V.P., Shekhonin A.A., Yakushenkov Yu.G. Proektirovanie optiko-elektronnykh priborov [Design of optoelectronic devices]. Moscow, Logos, 2000. 488 p.
Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)