Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Methodical Specifics of Thermal Experiments with Thin Carbon Reinforced Plates

# 07, July 2015
DOI: 10.7463/0715.0781946
Article file: SE-BMSTU...o184.pdf (1625.66Kb)
authors: O.V. Denisov, D.S. Minakov, A.A. Kirbay

Polymer composite materials (CM) are widely used in creation of large space constructions, especially reflectors of space antennas. Composite materials should provide high level of specific stiffness and strength for space structures. Thermal conductivity in reinforcement plane is a significant factor in case of irregular heating space antennas. Nowadays, data on CM reinforcement plane thermal conductivity are limited and existing methods of its defining are imperfect. Basically, traditional methods allow us to define thermal conductivity in perpendicular direction towards the reinforcement plane on the samples of round or rectangular plate. In addition, the thickness of standard samples is larger than space antenna thickness. Consequently, new methods are required. Method of contact heating, which was developed by BMSTU specialists with long hollow carbon beam, could be a perspective way. This article is devoted to the experimental method of contact heating on the thin carbon plates.
Thermal tests were supposed to provide a non-stationary temperature field with a gradient being co-directional with the plane reinforcement in the material sample. Experiments were conducted in vacuum chamber to prevent unstructured convection. Experimental thermo-grams processing were calculated by 1-d thermal model for a thin plate. Influence of uncertainty of experimental parameters, such as (radiation emission coefficients of sample surface, glue, temperature sensors and uncertainty of sensors placement) on the result of defined thermal conductivity has been estimated. New data on the thermal conductivity in reinforcement plane were obtained within 295 - 375 K temperature range, which can be used to design and develop reflectors of precision space antennas. In the future it is expedient to conduct tests of thin-wall plates from carbon fiber-reinforced plastic in wide temperature range, especially in the low-range temperatures.

References
  1. Romanov A.G. Metody i sredstva kontrolya otrazhayushchikh svoistv materialov, primenyaemykh v konstruktsiyakh reflektorov antenn kosmicheskikh apparatov. Kand. diss . [ Methods and means of controlling the reflection properties of the materials used in the construction of spacecraft antennas reflectors. Cand. diss. ]. Kazan, 2014. 160 p. (in Russian).
  2. Lopatin A.V., Rutkovskaya M.A. The review of designs of modern transformed space antennas (Part 1). Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva (Vestnik SibGAU) , 2007. no. 2, pp. 51-57. (in Russian).
  3. Reznik S.V., Kalinin D.Y., Denisov O.V. Features of large deployable antennas thermal state in space . Proc. of the 30th ESA antenna workshop on antennas for Earth observation, science, telecommunication and navigation space missions , Nordwijk, The Netherlands, 2008, pp. 335-338.
  4. Shashkov A.G., Volokhov G.M., Abramenko T.N., et al. Metody opredeleniya teploprovodnosti i temperaturoprovodnosti [ Methods for determination of thermal conductivity and thermal diffusivity ]. Moscow, Energiya Publ., 1973. 336 p. (in Russian).
  5. Thermal Diffusivity and Conductivity LFA / GHP / HFM / TCT. NETZSCH: company website. Available at:  http://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity.html  , accessed 20.04.2015.
  6. Tiwari A., Boussois K., Nait-Ali B., Smith D. S., Blanchart P. Anisotropic thermal conductivity of thin polycrystalline oxide samples. AIP Advances , 2013, vol. 3, iss. 11, art. no. 112129. DOI: 10.1063/1.4836555
  7. Matsevity Y.M., Lushpenko S.F. An Estimation of Thermal Properties by Means of Solving Internal Inverse Heat Transfer Problems. Preliminary Proc. of the 2nd Int. Conf. on Inverse Problems in Engineering: Theory and Practice , Le Croisic, France, 9–14 June 1996, vol. 2. N.Y., 1996, pp. 139–146.
  8. Blackwell B.F., Gill W., Dowding K.J., Easterling R.J. Uncertainty estimation in the determination of thermal conductivity of 304 stainless steel. Proc. of the Int. Mechanical Engineering Congress and Expositions (IMECE’00) , Orlando, FL, U.S.A., 2000. Report no. SAND2000-2379C.
  9. Reznik S.V., Denisov O.V. Arrangement and Results of Thermal Tests of Members of Composite Rod Space Constructions. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie = Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering , 2008. no.   4, pp. 81-89. (in Russian).
  10. Reznik S.V., Denisov O.V., Prosuntsov P.V., Timoshenko V.P., Shulyakovskii A.V. Thermal-vacuum tests of hollow composite rods intended for structures in space. Vse materialy. Entsiklopedicheskii spravochnik , 2012, no. 7, pp. 8–12. ( English version of journal: Polymer Science Series D , 2013, vol. 6, iss. 3, pp. 242-245. DOI: 10.1134/S1995421213030192 ).
  11. Reznik S.V., Timoshenko V.P., Prosuntsov P.V., Minakov D.S. Modeling and Identification of Heat Transfer Parameters in Rope Elements of Space Structures. II. Rationale of Experimental Conditions. Teplovye protsessy v tekhnike = Thermal Processes in Engineering , 2014, vol. 6, no. 8, pp. 378-383. (in Russian).
  12. Reznik S.V., Timoshenko V.P., Prosuntsov P.V., Minakov D.S. Modeling and Identification of Heat Transfer Parameters in Rope Elements of Space Structures. I. Rationale of Experimental Conditions. Teplovye protsessy v tekhnike = Thermal Processes in Engineering , 2013, vol. 5, no. 5, pp. 235-239. ( in Russian ).
  13. Reznik S.V., Prosuntsov P.V., Railyan V.S., Shulyakovsky A.V. Method and results of investigations of thermophysical properties of carbon–polymer composites with full-scale samples of beam space structures. Proc. of the 2nd Int. Symp. on Inverse Problems, Design and Optimization , 16–18 April 2007, Miami, Florida, USA, 2007, pp. 657-660.
  14. Reznik S.V., Timoshenko V.P., Prosuntsov P.V., Mial’ L.V. Theoretical Principles of Determining the Longitudinal Thermal Conductivity of Thin-Walled Structural Elements from Composite Materials. Inzhenerno-fizicheskii zhurnal , 2014, vol. 87, no. 4, pp. 838-844. (English version of journal: Journal of Engineering Physics and Thermophysics , 2014, vol. 87, iss. 4, pp. 864-870. DOI: 10.1007/s10891-014-1082-5 ).
  15. Timoshenko V.P., Minakov D.S. Method of manufacture of thin thermocouple type copper - constantan . Vse materialy. Entsiklopedicheskii spravochnik, 2014, no. 3, pp. 2-5. (in Russian).
Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)