Другие журналы

scientific edition of Bauman MSTU


Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Spline Approximation-Based Optimization of Multi-component Disperse Reinforced Composites

# 02, February 2015
DOI: 10.7463/0215.0757079
Article file: SE-BMSTU...o233.pdf (1103.58Kb)
authors: Yu.I. Dimitrienko, A.N. Drogolyub, E.A. Gubareva

The paper suggests an algorithm for solving the problems of optimal design of multicomponent disperse-reinforced composite materials, which properties are defined by filler concentrations and are independent of their shape. It formulates the problem of conditional optimization of a composite with restrictions on its effective parameters - the elasticity modulus, tension and compression strengths, and heat-conductivity coefficient with minimized composite density. The effective characteristics of a composite were computed by finite-element solving the auxiliary local problems of elasticity and heat-conductivity theories appearing when the asymptotic averaging method is applied.
The algorithm suggested to solve the optimization problem includes the following main stages:
1) finding a set of solutions for direct problem to calculate the effective characteristics;
2) constructing the curves of effective characteristics versus filler concentrations by means of approximating functions, which are offered for use as a thin plate spline with smoothing;
3) constructing a set of points to satisfy restrictions and a boundary of the point set to satisfy restrictions obtaining, as a result, a contour  which can be parameterized;
4) defining a global density minimum  over the contour through psi-transformation.
A numerical example of solving the optimization problem was given for a disperse-reinforced composite with two types of fillers being hollow microspheres: glass and phenolic. It was shown that the suggested algorithm allows us to find optimal filler concentrations efficiently enough.

  1. Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh [Averaging processes in periodic media]. Moscow, Nauka Publ ., 1984. 352 p. (in Russian).
  2. Dimitrienko Yu.I., Kashkarov A.I. Finite Element Method of Calculation of Efficient Characteristics of Composites with Periodical Structure. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki = Herald of the Bauman Moscow State Technical University. Ser. Natural science , 2002, no. 2, pp. 95-108. (in Russian).
  3. Dimitrienko Yu.I., Sborshchikov S.V., Belenovskaya Yu.V., Aniskovich V.A., Perevislov S.N. Modeling microstructural destruction and strength of ceramic composites based on the reaction-bonded SiC. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2013, no. 11, pp. 475-496. DOI:10.7463/1113.0659438 (in Russian ).
  4. Dimitrienko Yu.I., Drogolyub A.N., Sokolov A.P., Shpakova Yu.V. Method for solving an optimization problem of the structure of fiber reinforced composites under restrictions on thermal and strength properties. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU . 2013. №   11. С. 415-430. DOI :  10.7463/1113.0621065(in Russian ).
  5. Dimitrienko Iu.I., Iakovlev N.O., Erasov V.S., Fedoniuk N.N., Sborshchikov S.V., Gubareva E.A., Krylov V.D., Grigor'ev M.M., Prozorovskii A.A. Development of a multilayer polymer composite material with discrete structural-orthotropic fillers. Kompozity i nanostruktury = Composites and Nanostructures , 2014, vol. 6, no. 1, pp. 32-48. (in Russian).
  6. Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V., Fedonyuk N.N. Simulation of Viscoelastic Properties of Fibrous Laminated Polymer Composite Materials. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU, 2014, no. 11, pp. 748-770. DOI:10.7463/1114.0734246 (in Russian).
  7. Ghiasi H., Pasini D., Lessard L. Optimum Stacking Sequence Design of Composite Materials. Part I: Constant Stiffness Design. Composite Structures , 2009, vol. 90, no. 1, pp. 1-11. DOI: 10.1016/j.compstruct.2009.01.006
  8. Abdalla M.M., Kassapoglou C., Gürdal Z. Formulation of Composite Laminate Robustness Constraint in Lamination Parameters Space. Proceedings of 50th AIAA/ASME/ASCE/AHS/ASC Conference , Palm Springs, May 2009. Art. no. AIAA 2009-2478. DOI: 10.2514/6.2009-2478
  9. Adams D.B., Watson L.T., Gürdal Z., Anderson-Cook C.M. Genetic algorithm optimization and blending of composite laminates by locally reducing laminate thickness. Advances in Engineering Software , 2004, vol. 35, no. 1, pp. 35-43. DOI: 10.1016/j.advengsoft.2003.09.001
  10. Seresta O., Abdalla M.M., Gürdal Z. A Genetic Algorithm Based Blending Scheme for Design of Multiple Composite Laminates . Proceedings of 50th AIAA/ASME/ASCE/AHS/ASC Conference , Palm Springs, California, USA, 2009. Art. no. AIAA 2009-2699. DOI: 10.2514/6.2009-2699
  11. Grosset L., Le Riche R., Haftka R.T. A double-distribution statistical algorithm for composite laminate optimization. Structural and Multidisciplinary Optimization , 2006, vol. 31, no. 1, pp. 49-59. DOI: 10.1007/s00158-005-0551-z
  12. Giger M., Keller D., Ermanni P. A graph-based parameterization concept for global laminate optimization. Structural and Multidisciplinary Optimization , 2008. vol. 36, no. 3, pp. 289-305. DOI: 10.1007/s00158-007-0165-8
  13. Dimitrienko Yu.I. Tenzornoe ischislenie [Tensor Culculus]. Moscow, Vysshaya shkola Publ., 2001. 576 p. (in Russian).
  14. Dimitrienko Iu.I., Gubareva E.A., Sborshchikov S.V. Asymptotic theory of constructive-orthotropic plates with two-periodic structures. Matematicheskoe modelirovanie i chislennye metody , 2014, no. 1, pp. 36-57. (in Russian).
  15. Duchon J. Splines Minimizing Rotation Invariant Semi-norms in Sobolev Spaces. In: Schempp W., Zeller K., eds. Constructive Theory of Functions of Several Variables . Springer Berlin Heidelberg, 1977, pp. 85-100. DOI:10.1007/BFb0086566
  16. Bookstein F.L. Principal Warps: Thin-Plate Splines and the Decomposition of Deformations. IEEE Trans. on Pattern Analysis and Machine Intelligence , 1989, vol. 11, iss. 6, pp. 567-585. DOI: 10.1109/34.24792
  17. Girosi F., Jones M., Poggio T. Regularization theory and neural networks architectures. Neural Computation , 1995, no. 7, pp. 219-269. DOI: 10.1162/neco.1995.7.2.219
  18. Donato G., Belongie S. Approximate Thin Plate Spline Mappings. In: Proceedings of Computer Vision — ECCV 2002. Part III . Springer Berlin Heidelberg, 2002, pp. 21-31. DOI:10.1007/3-540-47977-5_2
  19. Chichinadze V.K. Reshenie nevypuklykh nelineinykh zadach optimizatsii [ Solution of non-convex nonlinear optimization problems ]. Moscow, Nauka Publ., 1983. 256 p. (in Russian).
  20. Prudkov E.N., Kuz'mina S.E. Optimization composition and research of the features modified epoxide composites. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki , 2010, no. 4-2, pp. 117-124. (in Russian).
  21. Dimitrienko Yu.I., Efremov G.A., Chernyavsky S.A. Optimum design of erosion-stable heatshield composite materials. Applied Composite Materials , 1997, vol. 4, no. 1, pp. 35-52. DOI: 10.1007/BF02481387
  22. Dimitrienko Yu.I., Sborshchikov S.V., Sokolov A.P., Sadovnichiy D.N., Gafarov B.R. Computer and experimental study modeling of failure of micro-sphere filled composite. Kompozity i nanostruktury = Composites and nanostructures , 2013, no. 3, pp. 35-51. (in Russian).

Thematic rubrics:
elibrary crossref ulrichsweb neicon rusycon

About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
© 2003-2019 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)