Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Numerical Simulation of a Grinding Process for the Spatial Work-pieces: a Model of the Work-piece and Grinding Wheel

# 09, September 2015
DOI: 10.7463/0915.0814388
Article file: SE-BMSTU...o016.pdf (950.09Kb)
authors: I.A. Kiselev1,*, I.S. Voronova1, A.A. Shirshov1, S.M. Nikolaev1

The paper describes a spatial grinding dynamics mathematical model. This model includes a grinding wheel dynamics model, a work-piece dynamics model, and a numerical algorithm of geometric modeling as well. The geometric modeling algorithm is based on the Z-buffer method with author’s modifications. This algorithm allows us to simulate the formation of a new work-piece surface when removing material and as well as to determine the cutting layer thickness for each abrasive grain of the grinding wheel. The use of the surface cell bilinear approximation and the simultaneous use of multiple projection directions are the special features of the algorithm. These features improve modeling quality of machined surface. The grinding wheel model is represented as cutting micro-edges (grains) set. Abrasive grains are randomly distributed on the wheel outer surface. Grains size, shape, wheel structure and graininess are taken into account. To determine the uncut chip thickness, which is cut off by each grain of the grinding wheel is used the algorithm, which finds intersection point of uncut work-piece surface with radial ray passing through the grain cutting edge. Grinding forces for each grain are defined based on the cutting layer thickness value using the phenomenological models described in the literature. Using transformations described in the article, grinding forces determined for each grain are reduced to the total grinding force, which acts on the tool and machined work-piece in the appropriate coordinate systems. Work-piece dynamics is modeled with the help of the finite element method using quadratic tetrahedral elements. The described model of spatial grinding dynamics makes it possible to evaluate the level of vibration and grinding forces, as well as the shape errors and surface quality of machined work-piece.

References
  1. Voronov S.A., Kiselev I.A., Ma Veidun, Shirshov A.A. Numerical Simulation of a Grinding Process Model for the Spatial Work-pieces: Development of Modeling Techniques. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2015, no. 5, pp. 40-58. DOI:10.7463/0515.0766577
  2. Xuekun Li. Modeling and simulation of grinding process based on a virtual wheel model and microscopic interaction analysis. PhD thesis . Worcester Polytechnic Institute, 2010. 145 р .
  3. Voronov S., Kiselev I. Dynamics of flexible detail milling. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics , 2011, vol. 225, no. 3, pp. 299-309. DOI:10.1177/1464419311418735
  4. Chen X., Rowe W.B. Analysis and simulation of the grinding process. Part II: Mechanics of grinding. International Journal of Machine Tools and Manufacture , 1996, vol. 36, no. 8, pp. 883-896. DOI: 10.1016/0890-6955(96)00117-4
  5. Li Kun, Liao Warren. Modelling of ceramic grinding processes Part I. Number of cutting points and grinding forces per grit. Journal of Materials Processing Technology , 1997, vol. 65, is. 1-3, pp. 1-10. DOI: 10.1016/0924-0136(95)02232-5
  6. Hou Z.B., Komanduri R. On the mechanics of the grinding process - Part I. Stochastic nature of the grinding process. International Journal of Machine Tools and Manufacture , 2003, vol. 43, no. 15, pp. 1579-1593. DOI: 10.1016/S0890-6955(03)00186-X
  7. Weinert K., Blum H., Jansen T., Rademacher A. Simulation based optimization of the NC-shape grinding process with toroid grinding wheels. Production Engineering , 2007, vol. 1, no. 3, pp. 245-252 . DOI: 10.1007/s11740-007-0042-8
  8. Werner K., Klocke F., Brinksmeier E. Modelling and simulation of grinding processes. Proc. of the 1st European Conf. on Grinding , Aachen, 6-7 November 2003, pp. 8-1–8-27.
  9. Kiselev I., Voronov S. Methodic of Rational Cutting Conditions Determination for 3-D Shaped Detail Milling Based on the Process Numerical Simulation. ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference . American Society of Mechanical Engineers, 2014, p. V006T10A075. DOI: 10.1115/DETC2014-34894
  10. Aurich J.C., Biermann D., Blum H., Brecher C., Carstensen C., Denkena B., Klocke F., Kroeger M., Steinmann P., Weinert K. Modelling and simulation of process: machine interaction in grinding. Production Engineering. Research and Development , 2009, vol. 3, is. 1, pp. 111-120. DOI: 10.1007/s11740-008-0137-x
  11. Warnecke G., Zitt U. Kinematic Simulation for Analyzing and Predicting High-Performance Grinding Processes. CIRP Annals - Manufacturing Technology , 1998, vol. 47, no. 1, pp. 265-270. DOI:10.1016/S0007-8506(07)62831-5
  12. Altintas Y. Manufacturing automation: Metal cutting mechanics, Machine tool vibrations and CNC Design . Camridge University Press, 2000. 286 p.
  13. Budak E., Altintas Y., Armarego E.J.A. Prediction of Milling Force Coefficients from Orthogonal Cutting Data. ASME Journal of Manufacturing Science and Engineering , 1996, vol. 118, no. 2, pp. 216-224. DOI: 10.1115/1.2831014
  14. Lamikiz A., Lopez de Lacalle L.N., Sanchez J.A., Bravo U. Calculation of the specific cutting coefficients and geometrical aspects in sculptured surface machining. Machining Science and Technology , 2005, vol. 9, no. 3, pp. 411-436. DOI: 10.1080/15321790500226614
  15. Voelcker H.B., Hunt W.A. The role of solid modeling in machining process modeling and NC verification. SAE Technical Paper no. 810195 . Warrendale, PA, USA, 1981. DOI: 10.4271/810195
  16. El-Mounayri H., Elbestawi M.A., Spence A.D., Bedi S. General geometric modeling approach for machining process simulation. The International Journal of Advanced Manufacturing Technology , 1997, vol. 13, is. 4, pp. 237-247. DOI: 10.1007/BF01179605
  17. Takata S., Tsai M.D., Inui M., Sata T. A cutting simulation system for machinability evaluation using a workpiece model. CIRP Annals - Manufacturing Technology , 1989, vol. 38, no. 1, pp. 417-420. DOI: 10.1016/S0007-8506(07)62736-X
  18. Kim G.M., Cho P.J., Chu C.N. Cutting force prediction of sculptured surface ball-end milling using Z-map. International Journal of Machine Tools and Manufacture , 2000, vol. 40, no. 2, pp. 277-291. DOI: 10.1016/S0890-6955(99)00040-1
  19. Kiselev I.A. Cutting process modelling geometric algorithm 3MZBL: working surface description approach. Inzhenernyy zhurnal: nauka i innovatsii = Engineering Journal: Science and Innovation , 2012, no. 6. DOI : 10.18698/2308-6033-2012-6-269
  20. Voronov S.A., Kiselev I.A. Cutting process modelling geometric algorithm 3MZBL: Algorithm of surface modification and instantaneous chip thickness determination. Inzhenernyy zhurnal: nauka i innovatsii = Engineering Journal: Science and Innovation , 2012, no. 6. DOI:10.18698/2308-6033-2012-6-261
  21. Bathe K.-J. Finite element procedures. New Jersey: Prentice Hall, 1996. 1037 p.
  22. Nikolaev S.M., Kiselev I.A.,Voronov S.A. Mechanical system finite element model refinement using experimental modal analysis. Proceedings of the 5-th International Operational Modal Analysis Conference (IOMAC’13), Guimaraes, Portugal, 13-15 May 2013. Vol. 5. 2013, pp. 167-170. DOI: 10.13140/2.1.4739.3920
Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)