МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 623.462.4

Основные направления развития высокоточного оружия

Дробышев А.М., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Плазменные энергетические установки»

Бархударян В.И., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Плазменные энергетические установки»

научный руководитель: **Камруков А.С.**, к.т.н., доцент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана кафедра «Плазменные энергетические установки» bauman@bmstu.ru

Обзорная часть

Анализ локальных войн и вооруженных конфликтов конца XX – начала XXI века (Югославия, Ирак, Ливия) показывает, что вооруженные силы стран НАТО, и, в первую очередь, США, делают основную ставку на воздушное нападение с использованием авиации и высокоточного оружия с целью поражения сначала – средств ПВО, а после завоевания господства в воздухе – других элементов обороны страны и ключевых объектов инфраструктуры.

В связи с этим особенную остроту приобретает вопрос наличия в арсенале страны как, собственно, конкурентоспособного ВТО, так и средств защиты от него.

Высокоточное оружие — это оружие, как правило управляемое, способное с вероятностью не ниже 0,5 поражать цель первым выстрелом (пуском) на любой дальности в пределах его досягаемости.

В данной статье рассмотрены два класса ВТО: управляемые авиационные бомбы (УАБ) и крылатые ракеты (КР).

- 1. Управляемые авиационные бомбы
- 1.1. Семейство JDAM Joint Direct Attack Munition, США (рис.1, A)

Комплект навигации и коррекции полета. Содержит хвостовое оперение, аэродинамические гребни и носовой блок инерциальной навигации с коррекцией по данным космической радионавигационной системы (КРНС) «Навстар» (ныне GPS). В

программах улучшения предусматривается использование дополнительных крыльев (JDAM-ER), а также лазерных или тепловизионных ГСН (LJDAM и JDAM-PIP соответственно).

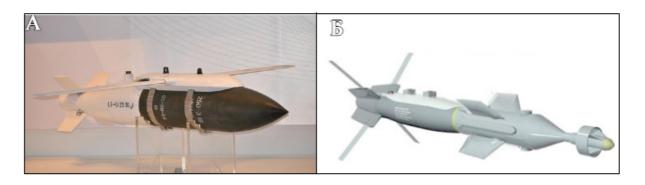


Рис. 1. Внешний вид JDAM-ER (A) и DMLGB (Б)

1.2. DMLGB - Dual Mode Laser-Guided Bomb, США (рис. 1, *Б*)

Комплект навигации и коррекции полета. Состоит из рулевого модуля с убирающимися крыльями, блока с системой управления и наведения по сигналам спутниковой и инерциальной систем, а также по подсвечивающему лазерному лучу.

1.3. SDB II - Small Diameter Bomb, США (рис. 2, *B*)

Разработанная компанией Raytheon на конкурсной основе УАБ малого калибра. В включает: co свою конструкцию механизм складывающимися крыльями, многофункциональный программируемый взрыватель, комбинированная система наведения, которая состоит из инерциальной навигационной системы (ИНС), приемника КРНС «Навстар», средств линии передачи данных «Линк-16» и трехрежимной ГСН, работающей в видимом, миллиметровом и инфракрасном (ИК) диапазонах волн.

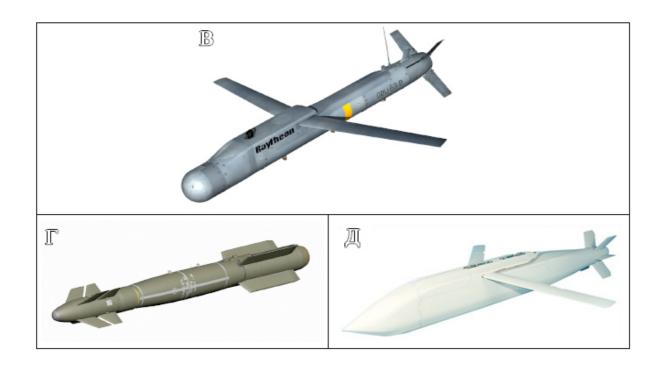


Рис. 2. Внешний вид SDB II (B), AASM (Г), JSOW (Д)

1.4. Семейство AASM - Armement Air-Sol Modulaire, Франция (рис. 2, Γ)

SBU-54 и SBU-64 — новейшие представители УАБ семейства AASM. Включают блок инерциальной навигации с коррекцией по данным КРНС «Навстар», а также лазерную и инфракрасную ГСН соответственно. В конструкции предусмотрен твердотопливный ускоритель.

1.5. JSOW - Joint Standoff Weapon, США (рис. 2, Д)

Тактическая планирующая УАБ, выполненная в трех исполнениях, которые имеют общий корпус. Перспективная модификация JSOW-C-1 обладает ИНС с коррекцией по данным КРНС «Навстар», ИК ГСН и продвинутым алгоритмом распознавания цели.

2. Крылатые ракеты

2.1. JASSM - Joint Air-to-Surface Standoff Missile, США (рис.3, A)

Крылатая ракета снабжена инерциальной системой управления (ИСУ) с коррекцией по данным КНРС «Навстар» и тепловизионной ГСН с внедренными алгоритмами распознавания цели, которые также позволяют подбирать оптимальную точку прицеливания. Выполнена по технологиям малой радиолокационной заметности. В конструкцию включен программируемый взрыватель. Плановые модернизации позволят повысить экономичность силовой установки, включить двустороннюю линию передачи

данных и добавить активную лазерную или радиолокационную ГСН. Обладает широкой номенклатурой боевого снаряжения.

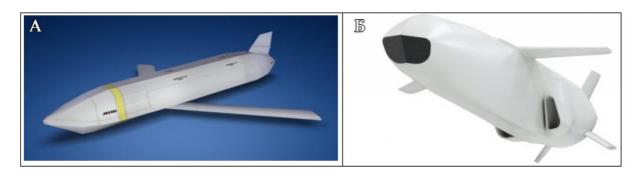


Рис. 3. Внешний вид JASSM (A), JSM (Б)

2.2. JSM - Joint Strike Missile, Hopberuя (рис. 3, *Б*),

Разрабатываемая ракета будет выполнена из радиопоглощающих материалов, снабжена ИНС с коррекцией по контуру рельефа местности или по данным КРНС «Навстар», тепловизионной ГСН с внедренными алгоритмами распознавания цели, которые также позволят подбирать оптимальную точку прицеливания. В том числе предусмотрена двусторонняя линия передачи данных.

2.3. KPBБ на базе Storm Shadow/SCALP, Великобритания (рис. 4, *B*)

Разрабатываемая ракета будет ИНС с коррекцией по контуру рельефа местности или по данным КРНС «Навстар», тепловизионной ГСН с внедренными алгоритмами распознавания цели, которые также позволят подбирать оптимальную точку прицеливания. В том числе предусмотрена двусторонняя линия передачи данных и экономичная силовая установка. Будет обладать широкой номенклатурой боевого снаряжения.

2.4. КРВБ на базе KEPD - Kinetic Energy Penetrating Destroyer, Германия (рис. 4, Γ)

Разрабатываемая ракета будет ИНС с коррекцией по контуру рельефа местности или по данным КРНС «Навстар», тепловизионной ГСН с внедренными алгоритмами распознавания цели, которые также позволят подбирать оптимальную точку прицеливания. В том числе предусмотрена двусторонняя линия передачи данных и экономичная силовая установка. Будет обладать широкой номенклатурой боевого снаряжения.

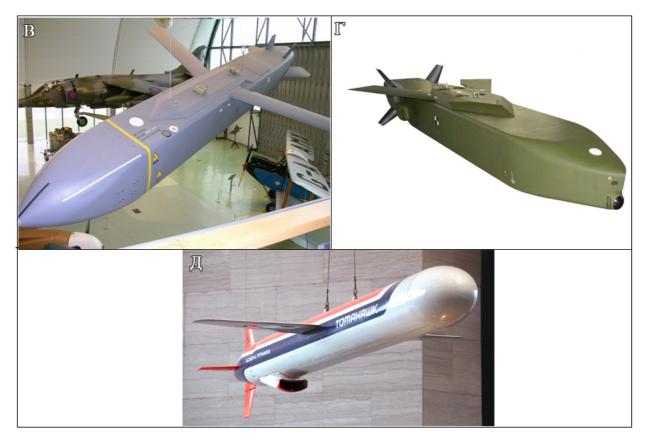


Рис. 4. Внешний вид Storm Shadow/SCALP (В), KEPD (Г), Tomahawk (Д)

2.5. Tomahawk Block V, США (рис. 4, Д)

Разрабатываемая ракета будет снабжена системой наведения по цифровым картам и контуру рельефа местности, а также приемником сигналов КРНС «Навстар». Предусматриваются двусторонняя линия передачи данных, программируемый взрыватель, экономичная силовая установка и радиолокационная ГСН. Будет обладать широкой номенклатурой боевого снаряжения.

Аналитическая часть

Естественно предположить, что наличие тех или иных конструктивных решений и технологий у высокоточного боеприпаса определяют набор его возможностей. Эта связь представлена в таблице 1 для УАБ и в таблице 2 для КР.

Введены следующие определения:

- 1. Частота применения технологии как часто среди боеприпасов данная технология встречается (A);
- 2. Перспектива использования технологии сколько возможностей позволяет получить применение данной технологии (Б);

3. Приоритет возможности (табл. 3) – коэффициент, полученный в результате обработки опросов специалистов в области высокоточного оружия, где 9 – высший приоритет, 1 - низший (В).

A	Б	Технология	Возможность
1	2	3	4
5	2	ИНС с коррекцией по КРНС	Всепогодность и круглосуточность примененияПомехозащищенность
4	2	Дополнительные крылья/	• Увеличение дальности полета
		твердотопливный ускоритель	• Изменение задачи после запуска
4	1	Лазерная ГСН	• Эффективность против нестационарных целей
4	1	ИК ГСН	• Всепогодность и круглосуточность применения
2	2	Программируемый взрыватель	Пробивание многослойных структурШирокий спектр решаемых задач
2	1	Двусторонняя линия передачи данных	• Изменение задачи после запуска
1	1	Модульный принцип конструкции	• Широкий спектр решаемых задач
1	4	Продвинутые алгоритмы распознавания целей	ПомехозащищенностьИзменение задачи после запускаАвтономность боеприпасаШирокий спектр решаемых задач
1	3	Комбинированная ГСН	 Всепогодность и круглосуточность применения Помехозащищенность Автономность боеприпаса

Набор возможностей конструктивных решений и технологий для КР

A	Б	Технология	Возможность
1	2	3	4
5	3	ИНС с коррекцией по КРНС	 Всепогодность и круглосуточность применения Помехозащищенность Внезапность (полеты на малых высотах)
5	1	Двусторонняя линия передачи данных	• Изменение задачи после запуска
4	3	Алгоритмы распознавания целей с выбором точки прицеливания	ПомехозащищенностьИзменение задачи после запускаШирокий спектр решаемых задач
4	1	ИК ГСН	• Всепогодность и круглосуточность применения
4	1	Технологии малой радиолокационной заметности	• Внезапность
3	2	Экономичная силовая установка	Увеличение дальности полетаИзменение задачи после запуска
3	2	Программируемый взрыватель	Пробивание многослойных структурШирокий спектр решаемых задач
2	1	Широкая номенклатура боевого снаряжения	• Широкий спектр решаемых задач

Приоритет возможности

Возможность	В
Эффективность против нестационарных целей	9
Помехозащищенность	8
Изменение задачи после запуска	7
Широкий спектр решаемых задач	6
Автономность боеприпаса (выстрелил-забыл)	5
Всепогодность и круглосуточность применения	4
Увеличение дальности полета	3
Пробивание многослойных структур	2
Внезапность	1

Чтобы определить некий общий параметр (вес технологии - O), сочетающий в себе показатели частоты применения технологии и количества обеспечиваемых ей возможностей, введем простую формулу:

$$O = A \cdot E \sum_{i=1}^{9} B_i \quad (1).$$

Результат решения данной формулы для каждой технологии УАБ и КР представлен в графическом виде на рис. 5 и 6 соответственно.

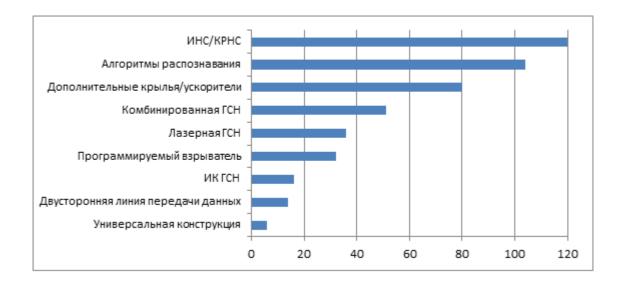


Рис. 5. Графическое представление решения формулы (1) для технологий УАБ

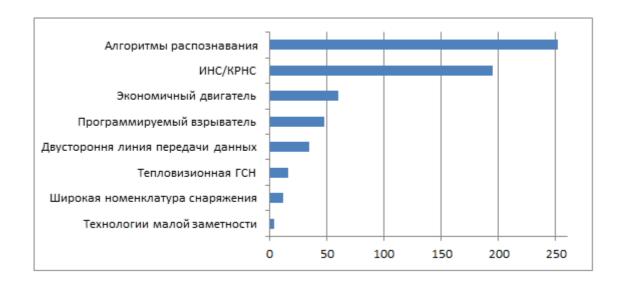


Рис. 6. Графическое представление решения формулы (1) для технологий КР

Выволы

- 1) В настоящее время среди как УАБ, так и КР широко распространено использование ИНС с коррекцией по КРНС, причем, анализируя полученные диаграммы, можно с уверенностью говорить, что данная технология будет совершенствоваться и обязательно присутствовать на будущих боеприпасах.
- 2) Среди УАБ также повсеместно встречаются ГСН различных видов и решения, направленные на увеличение дальности полета. Если же судить по диаграмме, то прибавив к двум перечисленным технологиям алгоритмы распознавания целей, можно получить основной вектор развития УАБ снаряды будут «умнее» и дальнобойнее.
- 3) Для КР часто применяются технологии сетецентричности, малой радиолокационной заметности, ИК ГСН и продвинутые алгоритмы распознавания целей, однако последние по перспективности имеют значительный отрыв от остальных пунктов. Беря в рассмотрение экономичные двигатели, делаем вывод, который схож с выводом по УАБ КР будут запускаться далеко за пределами действия ПВО и обладать весьма опасным «мышлением».

Список литературы

1. Кириллов А. Основные программы разработки в США новых УАБ // Зарубежное военное обозрение. 2007. № 4. С. 50-52.

- Кириллов А. Основные программы совершенствования УР класс «воздух-земля» большой дальности в ведущих странах НАТО // Зарубежное военное обозрение. 2008.
 № 1. С. 52-56.
- 3. Ильин С. Крылатые ракеты воздушного базирования ВВС США: состояние и перспективы развития // Зарубежное военное обозрение. 2011. № 8. С. 60-65.
- 4. Шевченко И. Крылатые ракеты морского базирования США // Зарубежное военное обозрение. 2011. № 11. С. 83-87.
- 5. Ильин С. Управляемое авиационное оружие малого калибра // Зарубежное военное обозрение. 2012. № 12. С. 59-64.
- 6. Globalsecurity.org. Режим доступа: http://www.globalsecurity.org/military/systems/munitions/smart.htm (дата обращения: 27.11.2014).