МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО «Московский государственный технический университет им. Н.Э. Баумана»

УДК 531.383.-11

Обзор современных микромеханических датчиков угловой скорости

Студент,

кафедра «Приборы и системы ориентации, стабилизации и навигации»: Токарев Д.К.

Научный руководитель: А.В. Кулешов,

к. т. н., доцент кафедры «Приборы и системы ориентации, стабилизации и навигации»

МГТУ им. Н.Э. Баумана tokarev91@mail.ru

Развитие технологий и постоянно возрастающие потребности различных областей техники в наличии малогабаритных устройств, способных при этом демонстрировать хорошую стабильность характеристик и высокую точность, делают актуальными разработки в области микромеханики. При этом не стоит полагать, что приставка «микро» характеризует лишь размеры готового датчика- это не совсем так. Безусловно, огромные усилия в последние годы направлены на сведение габаритов таких устройств к минимуму, и новейшие достижения в этом направлении уже позволяют оперировать элементами с размерами на уровне микрометров.


В то же время приставка «микро-» характеризует и технологический процесс изготовления таких датчиков, поскольку сам датчик состоит из множества микроструктур. Эти микроструктуры в большинстве своем вытравливаются из кристаллов кремния-основного материала микроэлектроники. На современном этапе развития именно технология обработки кремния позволяет достичь структур столь малых размеров.

Но все-таки нет каких-либо точных рамок, ограничивающих понятие «микромеханика», и правильнее, наверное, будет полагать, что оно относится одновременно как к технологии изготовления микромеханических приборов и систем, так и к современным тенденциям минимизации размеров самих датчиков, представляющих собой совокупность микромеханических структур.

МДУС представляет собой микроэлектромеханическую систему (сокращенно МЭМС), а именно совокупность механических и электрических электронных компонентов. Механическая часть любого МДУСа представляет собой двухстепенной гироскоп в упругом подвесе. Такой гироскоп позволяет обнаружить вращение основания в абсолютном пространстве вокруг оси, по которой у него нет степени свободы. В настоящее время существует множество конструктивных схем микромеханических гироскопов, но принцип действия любой их них основывается на том, что при задании периодического движения (первичных колебаний) подвижной части гироскопа и появлении переносного вращения возникают вторичные колебания, характер которых позволяет судить о параметрах вращательного движения.

Среди современных отечественных МДУСов можно выделить: 1) Микромеханический гироскоп ММГ-2 изготовленный ЦНИИ «Электроприбор» по схеме вибрационного RR-гироскопа внутренней торсионной подвеской, первичных электростатическим возбуждением колебаний, емкостным съемом информации использованием технологии «кремний на изоляторе». Данный прибор обладает следующими характеристиками:

- -диапазон измерения составляет $\pm 300^{\circ}$ /c,
- -нестабильность смещения нуля не превышает 150^{-0} /ч (при доверительном интервале 3σ),
- -плотность шумов (при цифровой передаче данных) менее 0.05^{0} /с/ $\sqrt{\Gamma u}$,
- -полоса пропускания 40 Гц,
- -габариты прибора 50×18×50 мм,
 - -масса не выходит за пределы 50 г. Данный прибор находится на стадии разработки. Он имеет два исполнения (Рис. 1, Рис. 2):

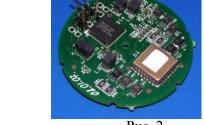


Рис. 1 Рис. 2 МДУС ММГ-2 ЦНИИ «Электроприбор» МДУС ММГ-2 ЦНИИ «Электроприбор»

2) МДУС, разработанный Раменским приборостроительным КБ выполнен по схеме кольцевого волнового гироскопа, изготавливаемого из кремния.

Характеристики данного прибора таковы:

- -диапазон измерения составляет ±100 °/c,
- -постоянная составляющая дрейфа находится в диапазоне ± 0.3 °/c,
- -случайная составляющая дрейфа не превышает 0,1 °/с,
- -габариты прибора: $35 \times 35 \times 30$ мм, а непосредственно гироскопа Ø 26×12 мм,
- -масса равна 40г.

Внешний вид прибора представлен на рис.3:

Рис. 3 МДУС РПКБ

3) НИИ ПМ им. Кузнецова изготавливает МДУС с использованием технологии объемного травления по смехе вибрационного RR-гироскопа.

Изготовителем заявлены следующие характеристики:

- -диапазон измерения ± 20 °/c,
- -случайная составляющая дрейфа находится на уровне 50 °/ч (при доверительном интервале равном σ),

- -плотность мощности шума составляет $0.05^{0}/c/\sqrt{\Gamma u}$,
- -габаритные размеры чувствительного элемента равны Ø 35×15 мм,
- -масса чувствительного элемента 18г.

Разработка приборов находится на стадии изготовления опытных образцов.

4) Датчики угловых скоростей ДУС-1 и ДУС-2 выпускаются ОАО «ЭЛПА». Разработкой данных приборов занималась кафедра «Приборы и системы ориентации, стабилизации и навигации»

МГТУ им. Н.Э. Баумана. Чувствительным элементом в приборе является металлическая балка, подвешенная с помощью упругих мембран в корпусе прибора. Возбуждение колебаний балки и съем информации о ее движении выполняются с помощью пьезоэлементов.

ДУС-1 имеет следующие характеристики:

- -диапазон измерения ± 600 °/с,
- -дрейф нуля за 30 секунд не более ± 0.5 °/с,
- -габаритные размеры составляют 30×30×50 мм,
- -масса не превышает 100г.

Характеристики ДУС-2 таковы:

- -диапазон измерений ± 8000 °/с,
- -габаритные размеры составляют 30×30×50 мм.
- -масса не превышает 100г.

Внешний вид датчиков (Рис.4):

Рис. 4 ДУС-1 и ДУС-2 фирмы ОАО «ЭЛПА»

Оба датчика подготовлены к серийному производству.

5) Кроме датчиков ДУС-1 и ДУС-2 ОАО «ЭЛПА» производит МДУС МПГ-1. Разработан данный прибор кафедрой «Приборы и системы ориентации, стабилизации и навигации» МГТУ им. Н.Э. Баумана. Чувствительным элементом является керамическая балка.

МПГ-1 обладает следующими характеристиками:

- -диапазон измерений ± 300 °/с,
- -дрейф нуля за 30 секунд не превышает ± 0.06 °/с.
- -габаритные размеры равны 10×20×30 мм,

Рис. 5

МДУС МПГ-1 фирмы ОАО «ЭЛПА

6) Отечественная фирма i-Sense некоторое время назад выпускала собственный МДУС, но в настоящее время использует гирочип, изготавливаемый в Швеции фирмой Silex Microsystems. Чувствительный элемент представляет собой микрокамертон.

Характеристики данного датчика следующие:

- -диапазон измерений ±300 °/c,
- -нестабильность нуля в запуске ± 5 °/ч (при доверительном интервале σ),
- -нестабильность нуля долгосрочная ± 50 °/ч (при доверительном интервале σ),
- -случайное блуждание 0,0025 0 /с/ $\sqrt{\Gamma \mu}$,
- -полоса пропускания 100 Гц,
- -габаритные размеры 13×6×2 мм.

Датчик изготавливается серийно.

Внешний вид гирочипа представлен на рис. 6:

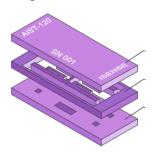


Рис. 6 Чирочип фирмы i-Sence

Среди современных зарубежных МДУСов можно выделить:

1) МДУСы, представленные фирмой STMicroelectronics. Все датчики, взятые для сравнительного анализа, имеют одну измерительную ось. В приборах реализованы RR схемы вибрационных гироскопов. Все три датчика изготавливается серийно.

Характеристики датчиков представлены в таблице 1.

Таблица 1

	LY330ALH	LY3100ALH	LY3200ALH	
Диапазон измерений	±300 °/c	±1000 °/c	±2000 °/c	
Температурная стабильность нуля (н. у. 25 °C)	0,02 °/c/°C	0,02 °/c/°C	0,09 °/c/°C	
Плотность шумов	0,014 ⁰ /c/√Γ μ ,	0,016 ⁰ /c/√Γц	0,074 ⁰ /c/√Γ ц	
Полоса	140 Гц			
пропускания				
Габаритные	3×5×1 mm			
размеры				

2) Фирма Analog Devices имеет на данный момент самую широкую линейку МДУСов. Для анализа были выбраны три модели, имеющие одну ось измерения.

Заявленные производителем характеристики датчиков приведены в таблице 2:

Таблица 2

	ADXRS450	ADXRS623	ADXRS652
Диапазон измерений	±300 °/c	±150 °/c	±250 °/c
Стабильность	±3 °/c	±20 °/c	±2%

характеристик	(дрейф нуля)	(нестабильность нуля в диап.	(температурная стабильность
		температур от $-40~^{0}$ С до $+105~^{0}$ С	характеристик)
Плотность шумов	0,015 ⁰ /c/√Γ ц ,	0,04 ⁰ /c/√Γц	0,06 ⁰ /c/√Гц
Полоса пропускания	80 Гц	3000 Гц	2500 Гц
Габаритные размеры	10,3×7,8×2,2 мм	7×7×3 мм	7×7×3 mm

Все датчики изготавливаются серийно.

3) МДУС ENC03-R компании muRATA изготовлен по схеме пьезокерамического балочного гироскопа.

Он имеет следующие характеристики:

- -диапазон измерений ± 300 °/с,
- -полоса пропускания 50 Гц,
- -габаритные размеры 8×4×2 мм.
- -масса 0,2 г.

Датчик изготавливается серийно.

4) Фирма Systron Donner производит кварцевый МДУС LCG50. Прибор изготавливается в четырех вариациях. Датчик изготавливается серийно.

Характеристики датчиков приведены в таблице 3:

Таблица 3

	LCG50-00020-	LCG50-00100-	LCG50-00250-	LCG50-00500-	
	100	100	100	100	
Диапазон	± 20°/c	± 100°/c	± 250°/c	± 500°/c	
измерений	20 / 0	= 100 / 0	- 25 0 7 C	20070	
Температурная					
стабильность	10°/c	8°/c	10°/c	20°/c	
нуля					
Плотность	≤0,005 ⁰ /c/√ <u>\\rangle</u> <u>\\rangle</u>	≤0,005 ⁰ /c/√Γц	≤0,006 ⁰ /c/√Γц	≤0,01 ⁰ /c/√Γц	
шумов	<u> </u>	<u> </u>	≥0,000 /C/ V 14	≥0,01 /C/ V 14	
Полоса	>50 Гц				
пропускания					
Габаритные	29,4×29,4×10,7 мм				
размеры					
(вместе с	27,4^27,4^10,/ MM				
платой)					
Macca	<12 г.				

Внешний вид датчика (Рис. 7):

Рис. 7 МДУС LCG50 фирмы Systron Donner

- **5**) Фирма Silicon Sensing предлагает одну из самых широких линеек кольцевых МДУС. Последним достижением является прибор CRS09. Он имеет следующие характеристики: -диапазон измерений ± 200 °/c,
 - -стабильность нуля составляет 3°/ч,
 - -плотность шумов 0,0017 0 /с/ $\sqrt{\Gamma \mu}$,
 - -полоса пропускания 55 Гц,
 - -габаритные размеры 63×63×19 мм,
 - -масса 60 г.

Недавно разработанная новая серия «PinPoint» отличается гораздо меньшими габаритами. Самый миниатюрный МДУС имеет размеры 5.7×4.8×1.2 мм. Все датчики данной серии имеют следующие характеристики:

-диапазон измерений от \pm 75°/с до \pm 1000°/с

- -стабильность нуля составляет от 24° /ч до 40° /ч при периоде интегрирования менее 1 с.,
 - -плотность шумов $0.018 \ 0/c/\sqrt{\Gamma u}$,
 - -случайное блуждание $0.0047 \, 0/c/\sqrt{\Gamma u}$,
 - -полоса пропускания 160 Гц.

Внешний вид датчиков представлен на рис. 8:

Рис. 8 МДУСы «PinPoint» фирмы Silicon Sensing

Все датчики изготавливаются серийно. Представленные микромеханические датчики угловой скорости составляют малую часть всех МДУСов, которые производятся в настоящее время. Дальнейшее исследование будет связано с более подробным сравнительным анализом существующих датчиков. На его основе можно будет спрогнозировать возможные и наиболее перспективные направления применения МДУСов.