Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Some Cavitation Properties of Liquids

# 03, March 2016
DOI: 10.7463/0316.0835344
Article file: SE-BMSTU...o036.pdf (1111.48Kb)
authors: K.D. Efremova1,*, V.N. Pil'gunov1



1 Bauman Moscow State Technical University, Moscow, Russia

Cavitation properties of liquid must be taken into consideration in the engineering design of hydraulic machines and hydro devices when there is a possibility that in their operation an absolute pressure in the liquid drops below atmospheric one, and for a certain time the liquid is in depression state. Cold boiling, which occurs at a comparatively low temperature under a reduced absolute pressure within or on the surface of the liquid is regarded as hydrostatic cavitation if the liquid is stationary or as hydrodynamic cavitation, if the liquid falls into conditions when in the flow cross-section there is a sharply increasing dynamic pressure and a dropping absolute pressure.
In accordance with the theory of cavitation, the first phase of cavitation occurs when the absolute pressure of the degassed liquid drops to the saturated vapour pressure, and the air dissolved in the liquid, leaving the intermolecular space, is converted into micro-bubbles of combined air and becomes a generator of cavitation “nuclei”. A quantitative estimate of the minimum allowable absolute pressure in a real, fully or partially degassed liquid at which a hydrostatic cavitation occurs is of practical interest.
Since the pressure of saturated vapour of a liquid is, to a certain extent, related to the forces of intermolecular interaction, it is necessary to have information on the cavitation properties of technical solutions, including air solution in a liquid, as a solute may weaken intermolecular bonds and affect the pressure value of the saturated solvent vapour. In the experiment to carry out vacuum degassing of liquids was used a hydraulic air driven vacuum pump.
The paper presents hydrostatic and hydrodynamic degassing liquid processes used in the experiment.
The experimental studies of the cavitation properties of technical liquids (sea and distilled water, saturated NaCl solution, and pure glycerol and as a 49/51% solution in water, mineral oil and jet fuel) enabled us to have an quantitative estimate of the absolute pressure in the allowable technical liquids and solutions, its dependence on the saturated vapour pressure, as well as to define the influence of a degree of the hydrodynamic degassing of liquid and the amount of its solute on the liquid tensile strength.
The paper gives a comparative assessment of cavitation properties of liquids. When studying the cavitation properties of solutions it has been found that a level of the allowable absolute pressure in a solution exceeds that of in the solvent. It is suggested that the dissolved solid, liquid or gaseous substances weaken the intermolecular bonds of the solvent and increase the pressure of its saturated vapour.

References
  1. Pearsall I.S. Cavitation (Mechanics Engineering Monograph). Mills and Boon, 1972. 80 p. (Rus. ed.: Pearsall I.S. Kavitatsiya . Moscow, Mir Publ., 2012. 98 p.).
  2. Smorodov E.A., Galiakhmetov R.N., Il'gamov M.A. Fizika i khimiya kavitatsii [Physics and chemistry of cavitation]. Moscow, Nauka Publ., 2008. 226 p. (in Russian).
  3. Oksler G. What is cavitation? Armaturostroenie , 2012, no. 3, pp. 70-73. (English version of journal: Valve World , 2012, no. 3, pp. 75.).
  4. Knapp R.T., Daily J.W., Hammitt F.G. Cavitation . New York, McGraw-Hill, 1970. 621 p. (Russ. ed.: Knapp R.T., Daily J.W., Hammitt F.G. Kavitatsiya . Moscow, Mir Publ., 1974. 687 p .).
  5. Margulis M.A. Sonoluminescence. Uspekhi fizicheskikh nauk , 2000, no. 3, pp. 263-287. (English version of journal: Physics-Uspekhi , 2000, no. 43, pp. 259-282. DOI: 10.1070/PU2000v043n03ABEH000455 ).
  6. Pil'gunov V.N. Research of mineral oil bursting strength. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2012, no. 5. DOI : 10.7463/0512.0370692 ( in Russian ).
  7. Yavorsky B.M., Detlaf A.A. Handbook of Physics . Central Books Ltd, 1973. 965 p. (Russ. ed.: Yavorsky B.M., Detlaf A.A. Spravochnik po fizike . Moscow, Nauka Publ., 1981. 512 p.).
  8. Akopyan V.B., Al'kov S.V., Bambura M.V., Ershov Yu.A. The surface of the cavitating bubble. Mashinostroitel' = Mechanician , 2015, vol. 84, iss. 12, pp. 10-15. (in Russian).
  9. Alimov M.A., Vorob'ev D.A., Khvesyuk V.I. Model of the impact of a cavitation bubble on the channel wall in the approximation of point explosion in an incompressible fluid. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2012, no. 07, pp. 309-324. DOI :10.7463/0712.0435175(in Russian).
  10. Aganin A.A., Il'gamov M.A., Lekhi R.T., Nigmatulin R.I., Taleiarkhan R.P., Toporkov D.Yu. Evolution of perturbations of spherical shape of cavitation bubble during its supercompression. Vestnik Bashkirskogo universiteta = Bulletin of  Bashkir University , 2012, vol. 17, no. 3, pp. 1180 -1195. Available at: http://bulletin-bsu.com/arch/2012/3/1-1/ , accessed 01.02.2016. (in Russian).
  11. Ni B.Y., Zhang A.M., Wu G.X. Numerical and Experimental Study of Bubble Impact on a Solid Wall. Journal of Fluids Engineering , 2015, vol. 137, iss. 3. DOI: 10.1115/1.4028798
  12. Kovalev A.A. Simulation of a cavitation attack on the working surface of a work-piece operated in a hydro-dynamic medium. Nauka i obrazovanie MGTU im. N.E. Baumana = Science and Education of the Bauman MSTU , 2013, no. 11, pp. 25-36. DOI :10.7463/1113.0623525 (in Russian).
  13. Tomita Y., Robinson P.B., Tong R.P., Blake J.R. Growth and collapse of cavitation bubbles near a curved rigid boundary. Journal of Fluid Mechanics , 2002, vol. 466, pp. 259-283. DOI: 10.1017/S0022112002001209
  14. Sirotyuk M.G. Akusticheskaya kavitatsiya [Acoustic cavitation]. Moscow, Nauka Publ., 2008. 271 p. (in Russian).
  15. Leonov G.V., Savina E.I. Information modeling of cavitation processes, initiated by ultrasonic oscillators. International Workshops and Tutorials on Electron Devices and Materials ( EDM'2006) . Novosibirsk, NSTU Publ., 2006. Available at:http://ультразвук.net/downloads/edm06/modeling_rus.pdf, accessed 01.02.2016. (in Russian).
  16. Ashokkumar M., Rink R., Shestakov S. Hydrodynamic cavitation – an alternative to ultrasonic food processing. Electronic Journal Technical Acoustics, 2011, no. 9. Available at: http://www.ejta.org/en/ashokkumar1 , accessed 01.02.2016.
  17. Margulis M.A. Sonochemistry as a New Promising Area of High Energy Chemistry. High Energy Chemistry , 2004, vol. 38, iss. 3, pp. 135-142. DOI: 10.1023/B:HIEC.0000027648.69725.98
  18. Margulis M.A.; Pil'gunov V.N., ed. About mechanism of occurrence of luminescence and electrification during flow of fluids in a narrow channel. Zhurnal fizicheskoi khimii = Russian Journal of Physical Chemistry A, 2009, vol. 83, no. 10, pp. 1975-1979. (in Russian).
  19. Margulis M.A., Pil'gunov V.N. Mechanism of luminescence and electrification of fluids during flow in narrow channels. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki. Fizika = Herald of the Bauman Moscow State Technical University. Ser. Natural science. Physics, 2010, no. 1, pp. 64-79. Available at: http://cyberleninka.ru/article/n/mehanizm-svecheniya-i-elektrizatsii-zhidkostey-pri-techenii-v-uzkih-kanalah , accessed 01.02.2016. (in Russian).
Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)