Другие журналы

scientific edition of Bauman MSTU

SCIENCE & EDUCATION

Bauman Moscow State Technical University.   El № FS 77 - 48211.   ISSN 1994-0408

Investigation of the Helium Proportion Influence on the Prandtl Number Value of Gas Mixtures

# 05, May 2014
DOI: 10.7463/0514.0710811
Article file: Burtsev_S.pdf (900.85Kb)
authors: S.A. Burtsev, D.S. Kochurov, N.L. Schegolev

The paper investigates an influence of helium fraction (light gases) on the Prandtl number value for binary and more complex gas mixtures.
It is shown that a low value of the Prandtl number (Pr-number) results in decreasing a temperature recovery factor value and, respectively, in reducing a recovery temperature value on the wall (thermoinsulated wall temperature) with the compressive gas flow bypassing it. This, in turn, allows us to increase efficiency of gasdynamic energy separation in Leontyev's tube.
The paper conducts a numerical research of the influence of binary and more complex gas mixture composition on the Prandtl number value. It is shown that a mixture of two gases with small and large molecular weight allows us to produce a mixture with a lower value of the Prandtl number in comparison with the initial gases. Thus, the value of Prandtl number decreases by 1.5-3.2 times in comparison with values for pure components (the more a difference of molar mass of components, the stronger is a decrease).
The technique to determine the Prandtl number value for mixtures of gases in the wide range of temperatures and pressure is developed. Its verification based on experimental data and results of numerical calculations of other authors is executed. It is shown that it allows correct calculation of binary and more complex mixtures of gases.
For the mixtures of inert gases it has been obtained that the minimum value of the Prandtl number is as follows: for helium - xenon mixtures (He-Xe) makes 0.2-0.22, for helium - krypton mixtures (He-Kr) – 0.3, for helium - argon mixes (He-Ar) – 0.41.
For helium mixture with carbon dioxide the minimum value of the Prandtl number makes about 0.4, for helium mixture with N2 nitrogen the minimum value of the Prandtl number is equal to 0.48, for helium-methane (CH4) - 0.5 and helium – oxygen (O2)  – 0.46.
This decrease is caused by the fact that the thermal capacity of mixture changes under the linear law in regard to the mass concentration of components while the viscosity and heat conductivity change under more complicated laws. Just this mismatch leads to having the local minimum for the Prandtl number value.

References
  1. Eckert E., Drewitz O. Die Berechnung des Temperaturfeldes in der laminaren Grenzschicht schnell angeströmter, unbeheizter KörperLuftfahrt-Forschung , 1 942, bd.19, ss. 189-196. (in German)
  2. Kutateladze S.S., Leont'ev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe [Heat-mass-exchange and friction in turbulent boundary layer]. Moscow , Energoatomizdat Publ ., 1985. 320 p . (in Russian).
  3. Petukhov B.S. Teploobmen v dvizhushcheysya odnofaznoy srede. Laminarnyy pogranichnyy sloy [Heat exchange in a moving single-phase medium. Laminar boundary layer]. Moscow, MEI Publ. , 1993. 350 p. (in Russian).
  4. Burtsev S.A., Leont'ev A.I. [Study of the influence of dissipative effects on the temperature stratification in gas flows (Review)]. Teplofizika vysokikh temperatur , 2014, vol. 52, no. 2, pp. 310-322. DOI: 10.7868/S0040364413060069 (English translation: High Temperature , 2014, vol. 52, iss. 2, pp. 297-307. DOI: 10.1134/S0018151X13060060 ).
  5. Leont'ev A.I. Sposob temperaturnoi stratifikatsii gaza i ustroistvo dlia ego osushchestvleniia (Truba Leont'eva) [The method of temperature stratification of gas and device for its implementation (Pipe Leontiev)]. Patent RF, no. 2106581. 1998. ( in Russian ).
  6. Leont'ev A.I. [Gas-dynamic method of energy separation of gas flows]. Teplofizika vysokikh temperature , 1997, vol. 35, no. 1, pp. 157-159. ( in Russian ).
  7. Leont'ev A.I. [Thermal stratification of supersonic gas flow]. Doklady Akademii Nauk , 1997, vol. 354, no. 4, pp. 475-477. (in Russian).
  8. Burtsev S.A. [Investigation of the temperature stratification of gas]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie - Herald of the Bauman MSTU. Ser. Mechanical Engineering , 1998, no. 2, pp. 65-72. (in Russian).
  9. Burtsev S.A. [Optimization of the geometry of supersonic channel in device for energy separation]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie - Herald of the Bauman MSTU. Ser. Mechanical Engineering, 1999, no. 2, pp. 48-54. (in Russian).
  10. Leont'ev A.I., Piliugin N.N. Polezhaev Iu.V., Poliaev V.M., eds. Nauchnye osnovy tekhnologii 21 veka [Scientific bases of technology of the 21century]. Moscow, UNPTs "Energomash" Publ., 2000. 135 p . (in Russian).
  11. Burtsev S.A., Leont'ev A.I. [Temperature stratification in supersonic gas flow]. Izvestiia RAN. Energetika , 2000, no. 5, pp. 101-113. (in Russian).
  12. Burtsev S.A. Issledovanie temperaturnogo razdeleniia v potokakh szhimaemogo gaza . Kand. diss. [Investigation of temperature separation in the flows of compressible gas. Cand. diss.]. Moscow, 2001. 124 p. (in Russian).
  13. Leont'ev A.I., Burtsev S.A., Vizel' Ia.M., Chizhikov Iu.V. [Experimental investigation of gas dynamic temperature stratification of natural gas]. Gazovaia promyshlennost' - Gas Industry , 2002, no. 11, pp. 72-75. (in Russian).
  14. Burtsev S.A. [Investigation of the operation of temperature lamination device working on the natural gas]. Nauka i obrazovanie MGTU im. N.E. Baumana - Science and Education of the Bauman MSTU , 2004, no. 9. DOI:10.7463/0904.0516097 (in Russian).
  15. Burtsev S.A. [Investigation of the operation of temperature lamination device working on the water and natural gas]. Nauka i obrazovanie MGTU im. N.E. Baumana - Science and Education of the Bauman MSTU , 2005, no. 5. DOI:10.7463/0505.0529473 (in Russian).
  16. Leont'ev A.I., Lushchik V.G., Yakubenko A.E. [The recovery factor in a supersonic flow of gas with a low Prandtl number]. Teplofizika vysokikh temperatur , 2006, vol. 44, no. 2, pp. 238-245. (English translation: High Temperature , 2006, vol. 44, iss. 2, pp. 234-242. DOI: 10.1007/s10740-006-0029-8 ).
  17. Leont'ev A.I., Lushchik V.G., Makarova M.S. [ Temperature stratification under suction of the boundary layer from a supersonic flow ]. Teplofizika vysokikh temperatur , 2012, vol. 50, no. 6, pp. 793-798. (English translation: High Temperature , 2012, vol. 50, iss. 6, pp. 739-743. DOI: 10.1134/S0018151X12060065 )
  18. Volchkov E.P., Makarov M.S. [Gas-dynamic temperature stratification in a supersonic flow]. Izvestiya RAN. Energetika , 2006, no. 2, pp. 19-31. (in Russian).
  19. Koval'nogov N.N., Fedorov R.V. [Numerical analysis of the coefficients of temperature restitution and heat transfer in high-speed flows]. Izvestiya vuzov. Aviatsionnaya tekhnika , 2007, no. 3, pp. 54-58.
  20. Koval'nogov N.N., Magazinnik L.M. [Numerical analysis of coefficients of temperature restitution and heat transfer in a turbulent dispersed flow]. Izvestiya vuzov. Aviatsionnaya tekhnika , 2008, no. 2, pp. 32-36. (in Russian).
  21. Fokeeva, E.V., Koval'nogov N.N. [Increase of Eficiency of Gas-Dynamical Temperature Stratification in the Disperse Stream]. Teplovye protsessy v tekhnike - Thermal Processes in Engineering , 2010, no. 8, pp. 338-341. (in Russian).
  22. Burtsev S.A. [Analysis of influence of different factors on the value of the temperature recovery factor at object surfaces in case of an airflow. Review]. Nauka i obrazovanie MGTU im. N.E. Baumana - Science and Education of the Bauman MSTU , 2004, no. 11. DOI:10.7463/1104.0551021 (in Russian).
  23. Tijani M.E.H., Zeegers J.C.H., de Waele A.T.A.M. Prandtl number and thermoacoustic refrigerators. The Journal of the Acoustical Society of America , 2002, vol. 112, no. 1, pp. 134-143.
  24. Campo A., Papari M.M., Abu-Nada E. Estimation of the minimum Prandtl number for binary gas mixtures formed with light helium and certain heavier gases: Application to thermoacoustic refrigerators. Applied Thermal Engineering , 2011, vol. 31, no. 16, pp. 3142-3146. DOI: 10.1016/j.applthermaleng.2011.05.002
  25. Jun Liu, Guenter Ahlers. Rayleigh-Benard convection in binary-gas mixtures: Thermophysical properties and the onset of convection. Physical Review E , 1997, vol. 55, no. 6, pp. 6950-6968.
  26. Taylor M.F., Bauer K.E., McEligot D.M. Internal forced convection to low-Prandtl-number gas mixtures. Int. J. Heat Mass Transfer , 1988, vol. 31, iss. 1, pp. 13-25. DOI: 10.1016/0017-9310(88)90218-9
  27. Pickett P.E., Taylor M.F., McEligot D.M. Heated turbulent flow of helium-argon mixtures in tubes. Int. J. Heat Mass Transfer , 1979, vol. 22, iss. 5, pp. 705-719. DOI: 10.1016/0017-9310(79)90118-2
  28. Kochurov D.S. [ Investigation of transport and thermophysical properties of binary mixtures of inert gases with the use of Tetra automated system of calculation]. Molodezhnyy nauchno-tekhnicheskiy vestnik. MGTU im. N.E. Baumana , 2014, no. 2. Available at: http://sntbul.bmstu.ru/doc/708327.html, accessed 08.05.2014. (in Russian).
  29. Moulay El Hassan Tijani . Loudspeaker - driven thermo - acoustic refrigeration . PhD thesis . Technische Universiteit Eindhoven, 2001. 170 p .
  30. Tournier J.-M.P., El-Genk M.S. Properties of noble gases and binary mixtures for closed Brayton Cycle applications. Energy Conversion and Management , 2008, vol. 49, iss. 3, pp. 469-492. DOI: 10.1016/j.enconman.2007.06.050
  31. El-Genk M.S., Tournier J.-M.P. Noble-Gas Binary Mixtures for Closed-Brayton-Cycle Space Reactor Power Systems. Journal of Propulsion and Power , 2007, vol. 23, no. 4, pp. 863-873. DOI: 10.2514/1.27664
  32. Diaz G., Campo A. Artificial neural networks to correlate in-tube turbulent forced convection of binary gas mixtures. International Journal of Thermal Sciences , 2009, vol. 48, iss. 7, pp. 1392-1397. DOI : 10.1016/j.ijthermalsci.2008.12.001
  33. Ibrahim A.H., Emam M., Hosny Omar, Karim Addas, Ehab Abdel-Rahman. Performance Evaluation of Thermoacoustic Engine Using Different Gases. Proc. of the 19th International Congress on Sound and Vibration , Vilnius, Lithuania, 8-12 July, 2012, pp. 2609-2615.
  34. Merkli P., Thomann H. Thermoacoustic effects in a resonance tube. Journal of Fluid Mechanics , 1975, vol. 70, no. 1, pp. 161-177.
  35. Belcher J.R. A study of element interactions in thermoacoustic engines . Final report for contract N00014-03-I-0077. PARGUM report 96-01, 1996. 210 p.
  36. Rubesin M.W., Pappas C.C. An analysis of the turbulent boundary-layer characteristics on a flat plate with distributed light-gas injection . Technical note 4149. National Advisory Committee for Aeronautics, 1958. 44 p.
  37. Hanbing Ke, Yaling He, Yingwen Liu, Fuqing Cui. Mixture working gases in thermoacoustic engines for different applications. International Journal of Thermophysics , 2012, vol. 33, iss. 7, pp. 1143-1163.
  38. Kirov V.S., Kozhelupenko Yu.D., Tetel'baum S.D. [ On the determination of the heat transfer coefficient of gas mixtures with helium and hydrogen ]. Inzhenerno-fizicheskiy zhurnal , 1974, vol. 26, no. 2, pp. 226-228. (in Russian).



Thematic rubrics:
Поделиться:
 
SEARCH
 
elibrary crossref ulrichsweb neicon rusycon
Photos
 
Events
 
News



Authors
Press-releases
Library
Conferences
About Project
Rambler's Top100
Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Phone: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)