Другие журналы
|
научное издание МГТУ им. Н.Э. БауманаНАУКА и ОБРАЗОВАНИЕИздатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл № ФС 77 - 48211. ISSN 1994-0408![]()
77-30569/239824 Метод системного анализа комплексов аэрофоторазведки
# 12, декабрь 2011
Файл статьи:
![]() УДК 681.5.01 МГТУ им. Н.Э. Баумана ВВИА им. профессора Н.Е. Жуковского и Ю.А. Гагарина Основой публикации являются результаты проведенных исследований по разработке метода и средств выработки требований к навигационному оборудованию, информационному обеспечению и системе управления полетом летательных аппаратов (ЛА) воздушной разведки, обеспечивающих в совокупности требуемое качество регистрируемых аэрофильмов. Исследование проведено с учетом принципиальных (теоретических) ограничений возможностей комплексов воздушной разведки и информационных технологий, обеспечивающих решение задач регистрации данных воздушной разведки и обнаружения (распознавания). Для удобства ознакомления материалы публикации изложены в цикле из двух статей. В настоящей статье на основе обзора и анализа комплексов, включающих пилотируемые и беспилотные ЛА – носители средств воздушной разведки. Во второй статье «Метод системного анализа аппаратуры и режимов аэрофоторазведки» рассматриваются вопросы учета режимов аэрофоторазведки и методов восстановления смазанных и дефокусированных изображений. Во второй статье рассматриваются аэрофотоаппаратура АФА, системы стабилизации положения АФА на различных носителях и системы привязки аэрофильмов к той или иной системе координат. При проведении исследований сделана попытка применить системный анализ комплексов воздушной разведки, построенных на основе применения аэрофотоаппаратов (АФА) и, в частности, цифровых АФА. Целями такого анализа являются: · Обеспечение разработки (проектирования) полетного задания для ЛА разведки, находящихся в эксплуатации. · Обеспечение процесса проектирования перспективных комплексов с учетом реальных условий эксплуатации. Задачи решаются на основе анализа: · ЛА – носителей средств воздушной разведки. · Аппаратуры воздушной разведки. · Основных факторов навигации ЛА и свойств аэрофотоаппаратов, определяющих качество аэрофильмов при различных режимах воздушной разведки. · Особенностей предварительной обработки аэрофильмов на борту ЛА. · Особенностей информационных систем обработки разведданных и подготовки разведдонесений. Качество регистрации и обработки аэрофильмов оценивается по следующим критериям: · Разрешение на местности. Этот фактор обусловлен качеством подсистем компенсации смаза, дефокусировки и фильтрации вибраций аэрофотоаппаратуры. · Точность привязки кадра аэрофильма к определенной системе координат. 1. Анализ современных и перспективных комплексов воздушной фоторазведки1.1 Основные типы известных и перспективных ЛА воздушной разведки1.1.1 Пилотируемые ЛА с комплексами воздушной разведки [1.2.3]1.1.1.1 Техническое описание самолета Ан-24 ФКАэрофотосъемочный самолет Ан-24ФК является модификацией серийного пассажирского самолета Ан-24 и предназначен для выполнения воздушного фотографирования территорий в картографических целях. На каждой половине руля высоты установлен триммер, на руле направления - триммер и пружинный сервокомпенсатор. Руль высоты и руль направления имеют осевую аэродинамическую компенсацию и стопроцентную весовую балансировку. Управление рулями и элеронами осуществляется посредством жестких тяг, управление триммерами руля высоты - тросовое. В систему управления рулями, элеронами и триммерами руля высоты включены рулевые машинки автопилота. Пилотажно-навигационное оборудование то же что и на серийном Ан-24. На борту установлен автопилот АП-28Л1Ф (модификация автопилота АП-28Л1), обеспечивающий автоматическое программное пилотирование самолета при выполнении аэрофотосъемки. В состав радиоэлектронного оборудования входят радиокомпасы АРК-5 №1 и №2, радиовысотомер РВ-2. Кроме того, установлены автомат программного разворота АПР-2, доплеровский измеритель угла сноса и путевой скорости ДИСС-3А "Стрела", курсовая система КС-6К, астрокомпас ДАК-ДБ-58, радиовысотомер больших высот РВ-25. Аэрофотосъемочное оборудование включает аэрофотоаппараты АФА-ТЭ-100 и 70 в гиростабилизирующей установке Н-55, аэрофотоаппараты АФА-41/7, 5, АФА-41/10, 20 и АФА-42/20 в плановых аэрофотоустановках топографический радиовысотомер РВТД-А, статоскоп С-51, электронный командный прибор ЭКП-2, аэроэкспонометр АЭ-2, визиры НКПБ-7. 1.1.1.2 Самолет воздушного наблюдения и аэрофотосъемки Ан-30Этот самолет является дальнейшей модификацией самолетов Ан-24 и Ан-26 и предназначен для аэрофотосъемочных и аэрогеофизических работ. Аэрофотосъемка выполняется в масштабе от 1:5000 до 1:200000 аппаратами с различными фокусными расстояниями. Возможна обработка фотопленки прямо на борту самолета. В носовом подфюзеляжном обтекателе возможно размещение метеорадиолокатора “Гроза-30”. Таблица 1.Летно-технические характеристики
1.1.1.3 Су-24МРФронтовой разведчик Су-24МР (Т-6Р) является модификацией истребителя Су-24. Главной нагрузкой самолета Т-6Р, не несущего ударного вооружения, стал базовый комплекс разведки БКР-1. Су-24МР должен производить съем информации с предельно малых высот и на «дозвуке» (рабочий режим). Специализированный самолет комплексной воздушной разведки Су-24МР используется для выполнения разведывательных задач в интересах командования сухопутный войск и фронтовой авиации, а на приморских направлениях - в интересах Военно-морского флота. Самолет обеспечивает всепогодную комплексную воздушную разведку днем и ночью, с учетом условий применения и возможностей разведывательной аппаратуры, на глубину до 400 км от линии боевого соприкосновения с противодействием средствам ПВО противника. Су-24МР не имеет среди зарубежных фронтовых разведчиков аналогов по комплексности получаемой развединформации. Например, на самолетах RF-4C, составляющих основу тактической разведывательной авиации ВВС США, используются ИК станция AN/AAS-18, РЛС бокового обзора AN/APQ-102, несколько АФА для плановой и перспективной съемки с больших и малых высот. Для радиотехнической разведки используются подвесные системы AIL AN/ALQ-61 или Литтон AN/ALQ-125, но отсутствуют средства лазерной и радиационной разведки. Причем американский разведчик, более легкий и с крылом фиксированной стреловидности, существенно уступает Су-24МР в дальности полета и скорости на малых высотах. По летным характеристикам к Су-24МР приближается английский разведчик «Торнадо» GR.1A, также модифицированный из истребителя-бомбардировщика с крылом изменяемой стреловидности. Но «Торнадо» GR.1A задуман как разведчик с сохранением боевых возможностей и оснащен лишь ИК системой разведки TTRRS (Tornado Infra-Red Reconnaissance System) панорамного и бокового обзора вместо пушек. Передаваемая и доставляемая разведывательная информация снабжается навигационными данными для ее привязки по координатам местоположения самолета и времени. Прием, обработка и дешифровка происходит на наземном комплексе. Это реалистичный и, по-видимому, единственно верный для существующей аппаратуры подход. (На английском разведчике «Торнадо» GR.1A полученная разведывательная информация записывается на видеоленту и может воспроизводиться на небольшом ТВ-индикаторе в кабине штурмана-оператора почти в реальном времени. Разведывательное оборудование самолета состоит из: · радиолокационной станции бокового обзора "Штык"; · аппаратуры телевизионной разведки "Аист-М"; · инфракрасного разведывательного оборудования "Зима"; · системы лазерной разведки "Шпиль-2М"; · станции общей радиотехнической разведки "Тангаж"; · аппаратуры радиационной разведки "Эфир-1М"; · аэрофотоаппаратов АП-402 панорамной и А-100 перспективной съемки. Для оперативной передачи на наземный приемный пункт разведывательной информации от телевизионного, теплового и лазерного средств разведки на самолете установлен широкополосный радиоканал ШРК-1. Для временной увязки разведывательных данных в состав оборудования самолета включена система единого времени "Севан ". Аппаратура лазерной разведки "Шпиль-2М" предназначена для ведения разведки местности с малых высот в любое время года и суток. Обеспечивает выдачу информации для передачи ее на наземный пункт, а также фоторегистрацию на борту. Аппаратура размещается в подвесном контейнере. Кадровый аэрофотоаппарат А-100 предназначен для перспективной аэрофотосъемки с малых высот, устанавливается в отсеке под левым воздухозаборником. Панорамный фотоаппарат АП-402 служит для выполнения аэрофотосъемки широкой полосы местности, размещен на лафете под центральной частью фюзеляжа. Проявленный на борту фотоматериал вбрасывается на землю в специальной капсуле. Таблица 2. Основные тактико-технические данные ЛА
1.1.1.4 МиГ-25РБ (изд.02Б)Одноместный всевысотный самолет оперативной разведки — бомбардировщик, создан на базе разведчика МиГ-25Р и предназначен для ведения воздушной фото- и радиотехнической разведки и нанесения ударов по площадным наземным целям. Кроме этого разработан дpyгой ваpиант обоpyдования: с использованием 2 АФА А-72 для детальной pазведки с yзкой полосой съемки. Таблица 3.Тактико-технические характеристики ЛА
Аэрофотооборудование устанавливается на самолетах МиГ-25Р/РБ/РБВ/РБТ. Оно подразделяется на три взаимозаменяемые комплектации аэрофотоаппаратов. 1. Комплектация для общей дневной разведки: · Аэрофотоаппарат А-70М · Аэрофотоаппарат А-Е/10 · Светоприемное устройство СУ5 · Фоторегистратор координат ФК-5 2. Комплектация для детальной дневной разведки: · Аэрофотоаппарат А-72 · Аэрофотоаппарат А-Е/10 · Светоприемное устройство СУ5 · Фоторегистратор координат ФК-5 3. Комплектация для ночной разведки (возможно фотографирование днем и в сумерки): · Аэрофотоаппарат НА-75 · Фоторегистратор координат ФК-5 1.1.1.5 Самолеты-разведчики США. Характерные представителиАмериканский стратегический дальний разведчик «Локхид A-11, тип СР-71», называемый "Блэкберд", по существу, является преемником эксплуатировавшегося с 1956 г. «Локхида У-2». Этот самолет-разведчик оснащен самым современным навигационным оборудованием, в том числе автономным астронавигационным устройством, позволяющим пилоту в любую секунду определять местонахождение самолета, а также счетчиком данных полета и бортовым компьютером, контролирующим движение по заданному маршруту. Разведоборудование, которым снабжен "СР-71 А", состоит из автоматической камеры дневного света, дополненной чувствительными инфракрасными сенсорами, чтобы вести разведку и делать цветные снимки подземных источников тепла (бункеров, ракетных шахт) в ночное время. Американская летающая система раннего предупреждения и обнаружения называется "АВАКС" (Airborne Warning and Control System). Этот самолет-разведчик "Боинг Е-ЗА" не несет вооружения. Он создан на базе пассажирского "Боинга 707-320* и имеет 17 человек экипажа. На больших высотах его скорость достигает 966 км/ч, на низких - 483 км/ч. Может находиться в воздухе без дозаправки 13 часов и преодолеть расстояние 10 тыс. км, рейсовая высота полета - 14 тыс. м. Самолет разведки RC 130 A. Основные технические характеристики, выбранные для решения задач анализа: · Нормальная взлётная масса: около 53000 кг · Предельная скорость на высоте: 3100 км/ч (2,6 М) · Практическая дальность: до 4000 км (с использованием ТРДД без форсажа) · Продолжительность полёта: до 5 ч · Практический потолок: 29000 м · Скороподъёмность: 60 м/с Самолет не предназначен для ведения комплексной аэрофоторазведки. При необходимости снабжается аэрофотоаппаратурой и ИК камерами. 1.1.1.6 Основные результаты анализа проведенного обзора комплексов разведки с пилотируемыми ЛААнализ проведен с целью выявления основных существенных характеристик комплексов разведки с пилотируемыми ЛА, с учетом которых строится в дальнейшем математической модели динамики полета и управления. К этим особенностям можно отнести: · Значительные значения массогабаритных характеристик. · Наличие подсистем стабилизации положения разведывательной аппаратуры. · Большое число задач привязки разведданных к системам координат, решаемых непосредственно на борту ЛА. · Автономность навигационных систем · Защита каналов передачи внешних данных координатной привязки. Однако при реальном, зачастую нештатном режиме аэрофотосъемки полная компенсация смаза регистрируемого изображения может быть неполной. Учет этого фактора применительно к ЛА с высокими массогабаритными характеристиками осуществлен в разрабатываемой далее математической модели. 1.1.2 Комплексы воздушной разведки с беспилотными ЛА[4-16]1.1.2.1 Обзор наиболее типичнных комплексов с БПЛАСравнительно новый тип беспилотных ЛА, вошедших в состав военной авиации ряда стран стал активно развиваться немногим более тридцати лет назад. По сравнению с пилотируемыми ЛА этот тип существенно дешевле за счет упрощенной конструкции и минимального состава бортового оборудования. Однако задача стабилизации режима работы АФА в составе комплексов имеет свою специфику и моделирование при проведении их системного анализа отличается от аналогичных задач применительно к комплексам с пилотируемыми ЛА. В таблице 4 приводятся основные характеристики беспилотных комплексов воздушной разведки, отобранных в соответствии с задачами системного анализа. Поскольку многие «качественные» показатели этих комплексов меняются из года в год в сторону их улучшения с опорой на прототип, данные рассматриваются и в «историческом» аспекте. Задачи, связанные с управлением полетом ЛА и с динамикой полета в режиме аэрофотосъемки, очевидно остаются низменными и уточняются в зависимости от весогабаритных характеристик и схемы упраления ЛА и положением АФА. Последнее подтверждается результатами обзора типичных комплексов воздушной разведки. Таблица 4. Основные характеристики беспилотных комплексов воздушной разведки
Таблица 6. Сравнительные характеристики наиболее известных американских моделей БПЛА
*ECM — средства электронного противодействия ***GCS — наземная станция управления ****GPS — спутниковая система навигации Таблица 7. Сравнительные характеристики наиболее известных израильских моделей БПЛА
1.1.3 Характерные свойства беспилотных самолетов-разведчиков1.1.3.1 Тактический беспилотный самолет-разведчик одноразового применения Ла-17Р (ТБР-1, изд.204)Создан на базе беспилотной мишени Ла-17М (изд.203). Фюзеляж самолета состоит из трех отсеков. Спецоборудование: фотоаппарат (АФА-40, АФА-20, БАФ-21 или АЩФА-5М), либо телекамера "Чибис". В хвостовом отсеке располагаются агрегаты электро- и радиооборудования и автопилот АП-118 (позднее АП-122), регулирующий подачу воздуха из баллонов к пневмо - приводам рулей и элеронов. Стартовая масса - 3100 кг. Высота полета - от 100 до 7000м, скорость - от 750 до 900 км/ч, максимальная дальность - около 260 км. Управление самолетом в полете осуществляет автопилот по заранее введенной в него программе и по радиокомандам с наземной станции. 1.1.3.2 Комплекс дальней беспилотной разведки Ту-123 (ДБР-1) "Ястреб"Основу комплекса составляет самолет с высокой сверхзвуковой скоростью и дальностью полета около 4000 км, оснащенный фото- и радиотехническим разведоборудованием. Фотоаппаратура позволяет опознавать шпалы железнодорожного полотна на снимках, сделанных с высоты 20 км при скорости полета 2700 км/ч. Ту-123 - цельнометаллический среднеплан с треугольными в плане крылом и оперением. Фюзеляж круглого поперечного сечения состоял из носовой и хвостовой частей, соединенных между собой четырьмя пневмозамками. В носовой части (НЧ) находится спецоборудование (три длиннофокусных аэрофотоаппарата АФА-54 и один панорамный, станция радиотехнической разведки СРС-6), система кондиционирования, часть агрегатов воздушной системы, электро и радиооборудования. Длина Ту-123 - 26,95 м, размах крыла - 7,94 м, стреловидность крыла по передней кромке - 67 градусов. Стартовая масса - около 35000 кг, масса топлива - 16600 кг. Скорость полета - 2,5М, высота - от 1800 до 20000 м, дальность - 3800 км. После старта разведчик летит в автоматическом режиме. На завершающем этапе полета самолет управляется, как правило, в ручном режиме, с помощью бортовых и наземных радиотехнических средств. 1.1.3.3 Комплексы беспилотной тактической разведки Ту-143 (ВР-3) "Рейс" и Ту-141 (ВР-2) "Стриж" оперативного назначенияТу-143 "Рейс" выполнен по аэродинамической схеме "утка" с неподвижным дестабилизатором. Носовой модуль фюзеляжа может отстыковываться и храниться отдельно. В зависимости от типа решаемых разведзадач в этом модуле размещаются: аэрофотоаппарат ПА-1 (позволяет с высоты 500 м выполнять снимки, на которых идентифицируются предметы размером от 20 см), либо телекамера "Чибис-Б", либо аппаратура радиационной разведки "Сигма". В средней части фюзеляжа установлены блоки автоматической системы управления АБСУ-143, доплеровский измеритель скорости и сноса ДИСС-7, радиовысотомер малых высот А-032, агрегаты электрооборудования и носовая опора шасси. Элевоны крыла и руль направления управляются гидравлическими рулевыми машинками. Длина Ту-143 - 8,06 м, размах крыла - 2,24 м, площадь -2,9 кв. м, стреловидность крыла по передней кромке - 58 градусов. Стартовая масса -1230 кг, посадочная - 1012 кг. Скорость полета - до 925 км/ч, дальность - 180 км, минимальная высота полета - 100 м. Количество разворотов (до 270 градусов) в полете - 2. Полет и посадка ВР-3 происходят по заранее введенной в АБСУ программе. Усовершенствованный вариант разведчика - Ту-243 "Рейс-Д оснащен более совершенным спецоборудованием (фото + телеаппаратура, либо фото + ИК - аппаратура разведки). Благодаря этому эффективность комплекса повышена более чем в 2,5 раза. Длина Ту-243 - 8,32 м, размах крыла - 2,25 м. Стартовая масса - 1400 кг. Скорость полета - до 940 км/ч, дальность - 360 км, минимальная высота полета - 50 м. Максимальная площадь разведки за один вылет - 2100 кв.км. 1.1.3.4 Многоразовый комплекс беспилотной воздушной разведки оперативного назначения ВР-2 (Ту-141) "Стриж"По аэродинамической схеме подобен "Рейсу", но имеет большие габариты, стартовую массу, запас топлива, дальность и продолжительность полета. Основной метод ведения разведки - аэрофотосъемка. Длина Ту-141 - около 14 м, размах крыла - около 4 м. Стартовая масса - около 7000 кг. Скорость полета - 950-1100 км/ч, дальность - 1000 км, минимальная высота полета - 50 м. 1.1.3.5 Комплекс дивизионной воздушной разведки Строй П с ДПЛА ПчелаРодоначальником отечественных комплексов тактических ДПЛА справедливо считается комплекс «Строй-П» с ДПЛА «Пчела-1». Структура комплекса и проектные решения по системе управления позволяют использовать в модели отечественных комплексов тактических ДПЛА. Комплекс «Строй-П» предназначен для наблюдения поля боя на удалениях до 50 км от места старта ДПЛА «Пчела-1». Комплекс «Строй-П» содержит в своём составе: · наземный пункт дистанционного управления (НПДУ), совмещённый с пусковой установкой, · ДПЛА (один из них – в съёмном контейнере на НПДУ), · эвакуационно-технологическую машину (МЭТ), · технологическую машину (ТМ). Дистанционно пилотируемый летательный аппарат “Пчела-1” конструктивно выполнен по нормальной аэродинамической схеме с толкающим винтом. Он имеет складывающееся крыло регулируемой стреловидности (для возможного изменения центровки ДПЛА). ДПЛА «Пчела-1» может нести в качестве целевой нагрузки телевизионную (ТВ) кадровую камеру с переменным фокусным расстоянием или инфракрасную (ИК) строчную аппаратуру разведки диапазона 8..14 мкм. В обоих случаях в состав целевой нагрузки ДПЛА входит также широкополосный передатчик с антенной для передачи ТВ или ИК изображения. ТВ или ИК изображение местности с борта ДПЛА поступает на НПДУ по широкополосной радиолинии. Изображение представляется операторам на двух экранах. Операторы, наблюдая представленное изображение, производят обнаружение и распознавание целей. Итогом работы операторов с целью является измерение её координат. Особенностью комплекса «Строй-П» является полная автономность его навигационной системы. Для навигации ДПЛА «Пчела-1» используется специально разработанный радиолокатор с активным ответом на основе псевдослучайных широкополосных сигналов. Навигационные параметры – дальность и азимут ДПЛА. Угол места ДПЛА не измеряется, вместо этого используют данные о текущей высоте, измеряемой на борту ДПЛА. Запросная и ответная радиолинии радиолокатора одновременно являются командным и телеметрическим каналами управления ДПЛА. Антенны радиолокатора и широкополосной радиолинии для приёма ТВ (ИК) информации конструктивно объединены. Таблица 8. Основные ТТХ комплекса «Строй-П»
Реализация системы поддержания заданного курса в комплексом заслуживает отдельного рассмотрения. В качестве компаса применены два магнитных зонда на пермаллое. Зонды размещены на гиростабилизированной горизонтальной площадке внутри курсогировертикали. Один из зондов ориентирован вдоль продольной оси ДПЛА, второй - перпендикулярно к первому в горизонтальной плоскости. Проекция магнитного поля на первый зонд пропорциональна косинусу, а на второй - синусу магнитного курса ДПЛА. Оператор задаёт курс лимбом на пульте. Датчик поворота лимба тоже синусно-косинусный. Синус и косинус заданного курса передаются на борт ДПЛА, где в бортовом вычислителе вырабатывается управление ДПЛА по курсу Ф: u =sin(Физм)cos(Фзад) – cos(Физм)sin(Фзад). Очевидно, что это управление при малых отклонениях курса ДПЛА от заданного равно u=sin(Физм-Фзад) ~Физм-Фзад. Бортовой вычислитель отклоняет руль направления ДПЛА пропорционально вычисленному управлению u. Алгоритм замечателен тем, что правильно работает при любых отклонениях курса ДПЛА от заданного, кроме теоретически возможного, но неустойчивого состояния, когда ДПЛА летит строго противоположно заданному курсу (теоретически в этом случае вырабатывается нулевое управление). Это свойство алгоритма позволило не реализовывать в бортовом вычислителе логические процедуры анализа курса по четвертям тригонометрического круга. Работа боевого расчёта комплекса при управлении ДПЛА. Первые 15 секунд полёта - газ максимальный, руль высоты - неподвижно в стартовом положении, управление осуществляется только по поддержанию нулевого крена ДПЛА. По истечении этого времени ДПЛА принимает текущий курс в качестве заданного и продолжает набор высоты до заданной (обычно 400 метров). На это уходит 2..3 минуты. Оператор после нажатия кнопки "Пуск" никаких действий по управлению ДПЛА не производит. После набора заданной высоты штурман (второй член боевого расчёта) лимбом на пульте устанавливает заданный курс ДПЛА на цель, которая может быть удалена на расстояние до 50 км. Заданный курс поступает по командному каналу управления в бортовой вычислитель ДПЛА и отрабатывается, как описано выше. Штурман, наблюдая показания индикаторов дальности и азимута, отмечает на карте путь ДПЛА. Через некоторое время (около 5 минут) штурман вычисляет и вносит в заданный курс поправку на ветер и погрешности измерения курса. Как правило, после этого боевой расчёт освобождается от необходимости выполнять какие-либо действия по управлению ДПЛА до приближения ДПЛА к цели. На расчётное время полёта к цели можно выключить радиоканалы, хотя на практике этого никогда не делали. Работа начинается для боевого расчёта при приближении ДПЛА к цели. Штурман оценивает накопившуюся погрешность вывода ДПЛА на заданную цель и вносит поправку в заданный курс. Оператор включает ТВ передатчик на борту ДПЛА и начинает наблюдение местности и поиск цели. Штурман помогает оператору, подсказывая ожидаемые ориентиры, и участвует в обнаружении и распознавании цели (известный "эффект коллективного распознавания"). После обнаружения и распознавания цели оператор наблюдает её элементы, штурман рассчитывает заданный курс повторного захода и при удалении ДПЛА от цели на необходимое для разворота расстояние устанавливает его. На фоне современных информационных и других технологий комплекс «Строй-П» успел морально устареть, а образцы НПДУ и ДПЛА устарели и физически. Однако для формирования задач системного анализа его ТТД допустимо использовать для построения модели комплексов малых тактических ДПЛА. Так находящийся в стадии доработок многоцелевой комплекс воздушной разведки "Типчак"Top of Form Комплекс обеспечивает высокую точность следования БЛА по маршруту и возможность установки на нем различной полезной нагрузки, использования аппарата автономно (по программе) и в режиме непосредственного радиоуправления. 1.1.4 Основные результаты анализа проведенного обзораАнализ проведен с учетом особенностей математической модели управления полетом ЛА в режиме аэрофотосъемки. В этом режиме необходимо обеспечить горизонтальный полет со значительной степенью стабилизации по курсу, крену и тангажу. Требования обусловлены необходимостью компенсации смаза, возможной дефокусировки, стабильностью определения координат и привязки абсолютной и воздушной систем координат к разведданным. Для учета фактора влияния турбулентностей атмосферы необходимо в свою очередь учесть массогабаритные характеристики ЛА – носителя аппаратуры воздушной разведки. По этим характеристикам будем в дальнейшем различать: · Тяжелые БПЛА массой более 1000 кг. · Средние БПЛА массой от 100 кг до 1000 кг. · Мини – БПЛА массой от 10кг. До 100 кг. · Микро – БПЛА массой в сотни грамм. · При выборе модели атмосферы и ее параметров необходимо различать: · Высотные БПЛА с потолком до нескольких километров. · Средневысотные и маловысотные БПЛА с потолком до километра 2. Модель полета ЛА в режиме аэрофотосъемки2.1 Пилотируемые ЛА, тяжелые и средние БПЛАПроведенный анализ позволяет построить модель схемы управления полетом пилотируемых ЛА а также тяжелых и средних БПЛА в режиме аэрофотосъемки (Рисунок 1). Рисунок 1. Схема управления полетом ЛА в режиме аэрофотосъемки со стабилизацией АФА Структурная схема, приведенная на рисунке 1 учитывает, что рассмотренные ЛА позволяют применять гироплатформы для стабилизации пространственного положенния оптической оси объектива АФА и фиьтрации вибраций, которые могут привести к дефокусировке регистрируемого изображения. Учтено также, что навигационные системы ориентации ЛА обладают точностью, позволяющую определять воздушную скорость и высоту полета, что позволяет применять подсистемы компесации смаза изображения в конструкции АФА путем управления положением объектива и приводом регистратора. 2.2 Мини- и микро- БПЛАПроведенный анализ позволяет построить модель схемы управления полетом также мини- и микро- БПЛА в режиме аэрофотосъемки (Рисунок 2). Рисунок 2. Схема управления полетом ЛА в режиме аэрофотосъемки без общей стабилизации АФА При построении схемы учтены следующие особенности данных типов ЛА: · В отличие от вышерассмотренных режим полета этих ЛА в значительной степени зависят от атмосферных флуктуаций. · Применение гироплатформ и автономных систем стабилизации АФА в целом весьма ограничено. · Стабилизация пространственного положения оптической оси объектива АФА в основном осуществляется введением дополнительных оптических компонент в схему объектива и снабжением регистратора подсистемой стабилизации положения. Подробнее этот вопрос рассматривается во второй статье цикла. 2.3 Линеаризованная модель ЛА.Летательный аппарат как объект управления может быть описан математическими моделями различной сложности. Для исследования процесса аэрофотосъемки, когда отклонения от требуемой траектории малы, целесообразно использовать линеаризованную модель пространственного движения вида
В режиме аэрофотосъемки опорным движением ЛА является прямолинейный горизонтальный полет с постоянной скоростью. Такой режим позволяет его моделирование в линейном приближении. В результате линеаризации полной нелинейной модели пространственного движения летательного аппарата с известными допущениями [17, 18], включающей уравнения движения центра масс, уравнения углового движения вокруг центра масс и кинематические уравнения, получим следующую систему уравнений:
где Дополним данную математическую модель уравнениями приводов органов управления самолета, принятых в виде апериодических звеньев:
Тогда вектор состояния линеаризованной модели примет вид:
где
В качестве сигналов управления принимаем управляющие сигналы от системы автоматического управления в каналах элеронов, руля направления, стабилизатора и двигателя. Тогда вектор управления линеаризованной модели для решаемой задачи имеет вид:
где 2.4 Учет турбулентности атмосферыПри исследовании динамики полета самолета в турбулентной атмосфере применим метод непрерывных случайных процессов для описания неспокойной атмосферы. Вектор приращения скорости ветра
Здесь Случайный процесс с такими спектральными плотностями представляется моделью «белого шума» с интенсивностями
который пропускается через формирующие фильтры с передаточными функциями соответственно
Здесь Данные формирующие фильтры включаются в расширенную модель динамики самолета. Формирующим фильтрам (6) для продольной и нормальной составляющей ветра соответствуют следующие дифференциальные уравнения в приращениях:
Здесь Для учета влияния ветра необходимо в уравнениях модели (2) указать влияние ветра на воздушную скорость, угол атаки и угол скольжения, так как эти параметры служат аргументами сил и моментов. Вектор воздушной скорости
Ветровые возмущения учитываются в линеаризованных уравнениях динамики самолета в соответствии с представленной ниже методикой. При этом в уравнениях фигурируют производные углов атаки и скольжения от ветра. Для их формирования в расширенную модель вводятся дополнительные дифференциальные уравнения:
с уравнениями связи
Здесь Путем объединения уравнений динамики самолета (2) и формирующих фильтров для возмущений (7) и (8), строится расширенная модель объекта управления
где вектор возмущений
а в уравнения динамики самолета (2) с учетом соотношений (9) добавляются следующие слагаемые, обусловленные действием ветра:
Решения уравнения (2) с учетом (9) и (11) в каждом конкретном случае находятся с учетом приведенной классификации ЛА по массогабаритным характеристик. Для моделирования режимов аэрофотосъемки в условиях максимального приближения реального полета ЛА они обладают наперед известной областью адекватности. Таким образом открывается возможность определения вектора воздушной скорости ЛА, что в свою очередь позволяет определять остаточный вектор смаза изображения и учитывать его при решении обратной задачи восстановления смазанного изображения при наземной обработке аэрофильмов. Девиация значений углов тангажа, курса и рысканья также может быть определена и это позволяет строить модель дефокусированного изображения. Следовательно, можно считать, что создаются условия для прогнозирования качества разведданных и восстановления смазанных и дефокусированных аэрофильмов. Эти вопросы рассматриваются во второй статье предложенного цикла. 1. "Военная Авиация", Media 2000 Авиационная интернет-энциклопедия 2. Гордиенко Ю.В., Морозов В.П., Прибылов А.С. Военная авиация, том 2. Издательство "Попурри" 1999 год. 3. Авиация: Энциклопедия / Гл. ред. Г. П. Свищёв — М.: Большая Российская энциклопедия, 1994. — С. 108. — 736 с. — ISBN 5-85270-086-X. 4. ВР-3 «Рейс», комплекс воздушной разведки с беспилотным летательным аппаратом Ту-143, [www.arms-expo.ru] 6. zala.aero 7. www.ptero.ru 10. www.gatewing.com 11. cropcam.com 12. c-astral.com 14. www.geocopter.nl 15. Салычев О.С. Автопилот БПЛА с инерциальной интегрированной системой — основа безопасной эксплуатации беспилотных комплексов. Портал «Беспилотная авиация». 16. Материалы сайта www.airwar.ru 17. Бочаров А.С., Сельвесюк Н.И. Методика синтеза законов управления для контура автоматической системы заправки самолета в воздухе с учетом ветровых возмущений // Приборы и системы. Управление, контроль, диагностика. 2007. № 7, с. 21–27 18. Буков В.Н. Адаптивные прогнозирующие системы управления полетом. – М.: Наука. Гл. ред. физ.-мат. лит., 1987. 19. Красовский А.А. Системы автоматического управления полетом и их аналитическое конструирование. – М.: Наука, 1973 Публикации с ключевыми словами: комплекс, автопилот, самолет, воздушная разведка, динамика полета, вертолет Публикации со словами: комплекс, автопилот, самолет, воздушная разведка, динамика полета, вертолет Смотри также: Тематические рубрики: Поделиться:
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|